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Abstract

On Higher Genus Gromov-Witten Correspondences for Log Calabi-Yau Surfaces with

Smooth Anticanonical Divisor

Benjamin Zhou

Let X be a log Calabi-Yau surface with a smooth anti-canonical divisor E that is an

elliptic curve. We prove an all genus correspondence and propose conjectures concerning

the following enumerative theories associated to (X,E):

(1) the two-pointed log Gromov-Witten theory of (X,E) from the Gross-Siebert

mirror symmetry program.

(2) additionally assuming X is toric, the open Gromov-Witten theory of special

Lagrangians in the canonical bundle KX , that is computed by the Topological

Vertex.

(3) the closed Gromov-Witten theory of the projective compactification P(KX⊕OX).

When X = P2, we prove the conjectures in low degrees and all genus, and provide their

computational validity in various cases.
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CHAPTER 1

Introduction

1.1. Background and motivation

Gromov-Witten theory is motivated by some classical questions in enumerative geom-

etry: what is the number Nd of degree d rational curves through 3d − 1 points in CP2?

In the 1990s, Kontsevich and Manin found a recursive formula for all d [KM94], using

Gromov-Witten theory,

Nd = ∑
d1+d2=d,d1,d2>0

Nd1Nd2 (d21d22(
3d − 4
3d1 − 2

) − d31d2(
3d − 4
3d1 − 1

))

Plugging in N1 = 1, the first few numbers are N2 = 2,N3 = 12,N4 = 620,N5 =

87304,N6 = 26312976... The first four numbers were known by the time of Zeuthen in

the late 19th century, but computing N5 and beyond is already quite difficult. Miracu-

lously, Kontsevich’s formula gives all of the numbers Nd. It is equivalent to the WDVV

equations in small quantum cohomology.

Gromov-Witten (GW) invariants are rational numbers that are virtual counts of genus

g curves in a target space X obtained by integrating incidence conditions on the moduli

space of stable maps. There many techniques to compute them. When the target X

carries a torus action (C∗)n, such as toric varieties, then Atiyah-Bott localization can

be used [K1]. Another method known as degeneration deforms the target to another
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space X ′, with X ′ ≅X in an appropriate sense, such that computing the Gromov-Witten

invariants of X ′ is easier and equivalent to computing those of X [Li].

A jumpstart to the field came from studying the number of rational curves Nd in the

quintic threefold X = {x5+y5+z5+w5+v5 = 0} ⊆ CP4, which is an example of a Calabi-Yau

manifold. The first few values of Nd are N1 = 2875,N2 = 609250,N3 = 317206375,N4 =

242467530000, and it is the content of the Clemens conjecture that Nd < ∞ for all d.

Miraculously, an answer for all Nd came from topological string theory. Motivated by

duality between Type IIA and Type IIB topological string theory, Candelas, de la Ossa,

Greene and Parkes predicted the number of rational curves on the quintic threefold to all

degrees d by computing period integrals on the mirror, which was the family of quintics

X̌ = {t(x5+y5+z5+w5+v5)+xyzwv = 0∣t ∈ P1} ⊆ CP 4 [CdOGP], [GP]. They were to able

match known numbers. Their seminal work has since been proven to be correct by the

work of Liu-Lian-Yau [LLY], Givental [Giv], and started the field of mirror symmetry.

When the target X is a point, Gromov-Witten theory reduces to computing inter-

section numbers on the moduli space of curves Mg,n, which was formulated in Witten’s

Conjecture [Wit] and proven by Kontsevich [K2]. These invariants are governed by the

KdV hierarchy. Two Fields Medals were won by Kontsevich and Mirzirkhani each for

their work on computing intersection numbers ofMg,n, [K2], [Mir].

The Gromov-Witten theory of a curve such as P1 has been computed by Okounkov and

Pandharipande using degeneration and Hurwitz theory, and they show that the 2-Toda

hierarchy governs the Gromov-Witten theory of P1 [OP]. The Gromov-Witten theory of

an elliptic curve was computed by Okounkov and Pandharipande, and shown to exhibit

quasimodular properties [OP].
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For K3 surfaces X, its genus 0 Gromov-Witten theory was first prediced by Yau and

Zaslow, who used string duality between Type II string theory on K3 and heterotic string

on T 4 [YZ]. The genus 0 Gromov-Witten invariants of K3 are expressed by the weight

12 modular discriminant. A proof of the Yau-Zaslow conjecture was given in symplectic

geometry by [BL]. In differential geometry, Taubes showed a correspondence between

Seiberg-Witten invariants of 4-manifolds and certain Gromov-Witten invariants [Tau].

For Calabi-Yau 3-folds X, Maulik, Nekrasov, Okounkov, and Pandharipande con-

jectured that Gromov-Witten invariants are equivalent to Donaldson-Thomas invariants

obtained from the moduli space of ideal sheaves associated to curves [MNOP]. Their

conjecture was proven when X is toric [MOOP]. Techniques such as mirror symmetry

and Eynard-Orantin recursion [FLZ], [FRZZ] or the Topological Vertex and large N du-

ality [AKMV] can be used to compute Gromov-Witten invariants of toric Calabi Yau

3-folds.

Gromov-Witten invariants are called closed when the curves one is counting are closed.

When they have boundary, they are called open Gromov-Witten invariants. Much of the

work in open Gromov-Witten theory has been done in symplectic geometry from studying

J-holomorphic curves from Riemann surfaces with boundary. Local Gromov-Witten in-

variants concern situations when the target X may be embedded into an ambient space Y ,

and the Gromov-Witten invariants of Y may be computed from that of X. One may also

study curves with prescribed tangencies to a divisor D in the target X. Such invariants are

called relative Gromov-Witten invariants. When the divisor has normal crossings singu-

larity, logarithmic Gromov-Witten invariants are used; log geometry tells us that a normal

crossings divisor is log smooth. It is of interest to establish correspondences between the
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different kinds of Gromov-Witten invariants, and sometimes these correspondences have

their origin in dualities from physics. Gromov-Witten invariants are conjectured to satisfy

beautiful summation formulas in terms of integer Gopakumar-Vafa or BPS invariants.

1.2. Enumerative invariants from log Calabi-Yau surfaces

We now turn to the setting of the thesis. Let (X,E) be a log Calabi-Yau surface, i.e.

X is a smooth projective surface, with a anticanonical divisor E = E1 + . . . +El ∈ ∣ −KX ∣

that is possibly nodal. The pair (X,E) carries a rich enumerative theory, and from it

one can associate many invariants. Assuming l ≥ 2, the work of [BBvG] establishes the

equivalence of open and closed Gromov-Witten theories, log Gromov-Witten theory of

(X,E), and quiver Donaldson-Thomas theory associated from (X,E). Log Calabi-Yau

surfaces are of interest from the viewpoint of mirror symmetry as T-duality, where special

Lagrangian fibrations are constructed in the complement X ∖E [Aur]

Now, suppose that E is a smooth anticanonical divisor, and we will interchangeably

refer to X as a Fano surface. By the adjunction formula, E is an elliptic curve. Let KX

the canonical bundle of X, and let Z ∶= P(KX ⊕OX) be its projective compactification.

Let π ∶ X̂ → X be the blow up of X at a point. Let Rg,2(X(logE)) be the genus

g, two-pointed, logarithmic Gromov-Witten invariant of X with λg-insertions with two

prescribed tangencies to E, one fixed and the other varying. Let Og(KX) be the genus

g, winding 1 open Gromov-Witten invariant of KX , and Ng,1(Z) be a genus g, closed

Gromov-Witten invariant of Z passing through one point.

When g = 0, we have the following triangle of equalities (up to multiplication by

rational constants),
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O0(KX) N0,1(Z)

R0,2(X(logE))

C

AB

Figure 1.1. A triangle of genus 0 equalities (up to rational constants) be-
tween open, log, and closed invariants associated from (X,E).

The equality A was recently established by [Wan] with a degeneration argument.

The equality B is an open-log correspondence established in [GRZ]. The techniques used

there were not limited to tropical curve counting, and scattering diagrams from the Gross-

Siebert mirror symmetry program. The equality C is an open-closed correspondence that

was established by [Cha] assuming X is toric.

1.3. Main results

The subject of this thesis is to extend the triangle of results in Figure 1.1 to higher

genus. We show that the relationship is not as simple in g > 0, and the equalities become

modified by the Gromov-Witten theory of E and two-pointed logarithmic invariants of

(X,E).

1.3.1. Higher genus local Gromov-Witten invariants from projective bundles

- Extending A

To extend equality A to higher genus, we apply the degeneration formula [KLR] to the

degeneration that was considered in [Wan]. Then, we use the higher genus log-local

principle of [BFGW] to establish an all genus correspondence between invariants of Z

and local Gromov-Witten invariants of X̂,
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Theorem 1. There exists constants c(g, β) ∈ Q such that,

∑
β∈H+2 (X,Z)

∑
g≥0
Ng,1(Z,β+h)h̵2gQβ = ∑

β∈H+2 (X,Z)
∑
g≥0

⎡⎢⎢⎢⎢⎣
c(g, β)ng (KX̂ , π

∗β −C)( ih̵

q
1
2 − q−12

)
2g−2

Qβ

⎤⎥⎥⎥⎥⎦
−∆pl

where q = eih̵, and ng(KX̂ , π
∗β −C) is the genus g, Gopakumar-Vafa invariant of KX̂ in

curve class π∗β − C. The discrepancy term ∆pl is a function of the stationary Gromov-

Witten theory of E and two-pointed log invariants of X(logE).

Using the invariance of Gromov-Witten invariants under simple flops of 3-folds [LR],

we prove an all genus blow up formula for the invariants Ng,1(Z),

Theorem 2. Let c(g, β) ∈ Q and ∆pl be as in Theorem 1, and let W = BlpZ be the

blow up of Z at a point p on the infinity section of Z. Then, we have that,

∑
β∈H+2 (X,Z)

∑
g≥0
Ng,1(Z,β + h)h̵2gQβ = ∑

β∈H+2 (X,Z)
∑
g≥0
[c(g, β)Ng,0(W,β + L̃)h̵2gQβ] −∆pl

We provide explicit formulas of Theorems 1, 2 in genus 1.

1.3.2. Higher genus open-log conjecture for smooth divisor with results for P2

- Extending B

To extend equality B to higher genus, we follow the roadmap of [GRZ] and use the

scattering diagrams of Gross-Siebert to first prove an all genus correspondence between

q-refined tropical curves and local invariants of X̂,
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Theorem 3. Let (X,E) be a log Calabi-Yau surface X with smooth anticanonical

divisor E. Then, we have,

∑
β∈H+2 (X,Z)

∑
g≥0
Rtrop
g,(e−1,1)(X,β)h̵

2gQβ = ∑
β∈H+2 (X,Z)

∑
g≥0

⎡⎢⎢⎢⎢⎣
(−1)β⋅E+g−1ng(KX̂ , π

∗β −C)( ih̵

q
1
2 − q−12

)
2g−2

Qβ

⎤⎥⎥⎥⎥⎦

−∆ol

where Rtrop
g,(e−1,1)(X,β) is the genus g, two-legged, q-refined tropical curve count in the

scattering diagram associated to (X,E) (see Chapter 3 for definition of these invariants),

and ng(KX̂ , π
∗β −C) is the genus g, Gopakumar-Vafa invariant of KX̂ in class π∗β −C,

∆ol is a discrepancy term defined in Equation 6.10 that is a function of the stationary

Gromov-Witten theory of E and two pointed log invariants of X(logE), and q = eih̵.

From Theorem 3, we conjecture an all genus correspondence between two-pointed log

invariants of (X,E) and open invariants of KX ,

Conjecture 1 (Open-log conjecture for smooth divisor). Let (X,E) and ∆ol be as

in Theorem 3. Furthermore, assume that X is toric, and π ∶ X̂ → X is a toric blow up.

Then, we conjecture the following correspondence,

∑
β∈H+2 (X,Z),

g≥0

(e − 1)Rg,(e−1,1)(X(logE), β)h̵2gQβ = ∑
β∈H+2 (X,Z),

g≥0

[(−1)
g+1

(e − 1) n
open
g (KX , β + β0,1)

( ih̵

q
1
2 − q−12

)
2g−2

Qβ

⎤⎥⎥⎥⎥⎦
−∆ol
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where Rg,(e−1,1)(X(logE), β) are two-pointed log invariants of X(logE) with λg-insertion

in class β, and ng(KX , β+β0,1) is the genus g, winding 1, framing 0, open BPS invariant

of a single outer AV-brane L in KX , and q = eih̵.

We provide explicit formulas of Conjecture 1 in genus 1 and 2, and provide computa-

tional validity.

When X = P2, we use the topological vertex (Theorem 6) to prove Conjecture 1 in low

degrees and all genus,

Theorem 4. Let X = P2 and H ∈H2(P2,Z) the hyperplane class. Then Conjecture 1

holds in curve classes β = dH for d = 1,2,3,4 and all genus.

We discuss applications of Conjecture 1 and Theorem 4 to quantum theta functions

and open mirror symmetry in Section 6.6, as part of upcoming work [GRZZ].

1.3.3. Higher genus open-closed conjecture with results for P2 - Extending C

Using Theorem 1, we conjecture that,

Conjecture 2 (Open-closed conjecture for projective bundles). Let c(g, β) ∈ Q and

∆pl be as in Theorem 1. Furthermore, assume that X is toric, and π ∶ X̂ → X is a toric

blow up. Define d(g, β) ∶= (−1)g+1c(g, β). We conjecture the following equality,

∑
β∈H+2 (X,Z)

∑
g≥0
Ng,1(Z,β+h)h̵2gQβ = ∑

β∈H+2 (X,Z)
∑
g≥0

⎡⎢⎢⎢⎢⎣
d(g, β)nopeng (KX , β + β0,1)(

ih̵

q
1
2 − q−12

)
2g−2

Qβ

⎤⎥⎥⎥⎥⎦
−∆pl
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where nopeng (KX , β + β0,1) is the genus g, 1-holed, winding 1, open BPS invariant in

curve class β + β0 of an outer Aganagic-Vafa brane L in framing 0 (see Chapter 4 for its

definition).

We provide explicit formulas of Conjecture 2 in genus 1 and 2.

When X = P2, we use the topological vertex (Theorem 24) to prove Conjecture 1 in

low degrees and all genus,

Theorem 5. Let X = P2 and H ∈H2(P2,Z) the hyperplane class. Then Conjecture 2

holds in curve classes β = dH for d = 1,2,3,4 and all genus.

1.3.4. Higher genus open-closed BPS conjecture for toric Calabi-Yau three-

folds with results for local P2

By comparing known open and closed Gopakumar-Vafa invariants [GZ], [MV], [HKR],

[KZ], we make the following conjecture relating open and closed Gopakumar-Vafa invari-

ants of the toric Calabi-Yau threefolds that are KX and KX̂ ,

Conjecture 3 (Open-closed BPS conjecture for toric Calabi-Yau threefolds). Let X

be a toric del Pezzo surface, and π ∶ X̂ → X a toric blow up with exceptional curve C.

Then we have the following equality,

ng(KX̂ , π
∗β −C) = (−1)g+1nopeng (KX , β + β0,1)

where ng(KX̂ , π
∗β −C) is the genus g, closed Gopakumar-Vafa invariant of the canonical

bundle KX̂ in curve class π∗β−C, and nopeng (KX , β+β0,1) be the genus g, 1-holed, winding
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1, open BPS invariant of KX with boundary on a single, outer Aganagic-Vafa brane in

framing 0 in disc class β + β0 ∈H2(KX , L).

We use the topological vertex [AKMV] and its refined version [IKV] to show that,

Theorem 6. Conjecture 3 is true for X = P2 in curve classes β = dH for d = 1,2,3,4

and in all genus.

1.4. Roadmap of the thesis

In Chapter 2, we present preliminaries. In Chapter 3, we describe scattering and its

quantized version, define q-refined tropical curve invariants, and describe Gross-Siebert

mirror symmetry applied to P2. In Chapter 4, we define the Gromov-Witten invariants

needed for the main results of the thesis. In Chapter 5, we prove Theorems 1 and 15,

state Conjecture 2, and prove Theorem 5. In Chapter 6, we prove Theorem 3, state

Conjecture 1, prove Theorem 4, and discuss applications to [GRZZ]. In Chapter 9, we

state Conjecture 3 and prove Theorem 6. In Appendix A, we summarize the g > 0 log-

local principle of [BFGW], derive its form in genus 1 and 2, specialize it to P2, and also

describe an alternative way to compute an invariant from Chapter 5.
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CHAPTER 2

Preliminaries

2.1. Gromov-Witten Theory

2.1.1. The moduli space of stable maps

Let Mg,n be the moduli space of nodal, genus g curves with n distinct marked points.

The moduli space can be defined with geometric invariant theory, and we refer to [HM]

for details. When g > 1, Mg,n is a non-singular Deligne-Mumford stack of dimension

3g − 3 + n. Examples includeM0,n = (P1)n−3, andM1,1 is parametrized by the j-line.

Let X be a smooth projective variety.

Definition 1. A stable map to X is the following data:

(1) (C,p1, . . . , pn, f) is an at worst nodal curve C of arithmetic genus g with n distinct

smooth points p1, . . . , pn of C and a morphism f ∶ C → X such that f∗[C] = β ∈

H2(X,Z). We say β is the curve class of f .

(2) The map f is stable or has finite automorphism group, where two stable maps

f ∶ (C,p1, . . . , pn)→X and f ′ ∶ (C ′, p′1, . . . , p′n)→X are isomorphic if there exists

an isomorphism φ ∶ (C,p1, . . . , pn) → (C ′, p′1, . . . , p′n) such that φ(pi) = p′i and

f ′ ○φ = f . Equivalently if f is constant on a component of C, then if the genus of

the component is 0, it is required to have at least 3 points that are either marked

points or nodes. If the genus of the component is 1, it is required to have at least

1 point that is either a marked point or node.
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Let Mg,n(X,β) be the moduli space of genus g, n-marked stable maps to X in the

curve class β. Elements are isomorphism classes [f ∶ C →X], which we abbreviate as [f].

Example 1. Mg,n(X,0) ≅Mg,n×X. When the curve class is 0, then stable maps are

just constant maps.

Example 2. M0,0(Pn,1) is the Grassmannian of lines Gr(1, n).

Example 3. The moduli spaceM0,0(P2,2) is the space of complete conics. There are

four components of the moduli space, containing maps of the following kind,

(1) Dense open set corresponding to parametrizations of embedded, nonsingular, ir-

reducible conics.

(2) A stable map mapping from two P1’s joined together by a node to a reducible

conic consisting of two lines meeting transversely.

(3) A stable map of the same domain in 2) mapping to a single line together with a

specified point that is the image of the node.

(4) Double covers of P1 by P1.

The moduli spaceMg,n(X,β) is compact. There are evaluation maps ev = ev1 × . . . ×

evn ∶Mg,n(X,β) → Xn defined by [f] ↦ (f(p1), . . . , f(pn)). For each marked point pi,

there is a forgetful map fti ∶ Mg,n+1(X,β) → Mg,n(X,β) that forgets the i-th marked

point and stabilizes, as long as the domain and codomain moduli spaces exist. The

universal curve U of Mg,n(X,β) can be identified with Mg,n+1(X,β), and we have the

diagram,
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U X

Mg,n(X,β)

f

π

where the universal map f can be identified with the evaluation map at the (n+1)-marked

point, and π can be identified with ftn+1.

2.1.2. Virtual fundamental class

We would like to study enumerative geometry onMg,n(X,β) by pulling back cohomology

classes in H∗(X) and integrating. To do so, we must construct a well-defined virtual

fundamental class in A∗(Mg,n(X,β)).

When Mg,n(X,β) is smooth and compact, then the fundamental class is the virtual

fundamental class, and we may define Gromov-Witten invariants by integrating cohomol-

ogy classes onMg,n(X,β). However, in general,Mg,n(X,β) can be quite ill-behaved: it

can be reducible, non-reduced, or of impure dimension.

We want to calculate the expected or virtual dimension of Mg,n(X,β) by analyzing

its deformation/obstruction theory. Let [f ∶ C → X] be a stable map. Its deformations

consist of deformations of the map or of the domain curve C. Deformations of the map

are given by the group H0(C,f∗TX), and obstructions are given by H1(C,f∗TX). Defor-

mations of domain curve is of dimension dimMg,n = 3g − 3 + n. Therefore, the (complex)

virtual dimension is given by,

vdimMg,n(X,β) = h0(C,f∗TX) − h1(C,f∗TX) + 3g − 3 + n

By the Riemann-Roch formula, the above is,
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vdimMg,n(X,β) = deg(f∗TX) + rk(f∗TX)(1 − g) + 3g − 3 + n

= (dimX − 3)(1 − g) + ∫
β
c1(TX) + n

(2.1)

Notice the formula simplifies considerably when X is a Calabi-Yau 3-fold, i.e. when

c1(TX) = 0.

Example 4. Here is an example of Mg,n(X,β) having impure dimension. Let H ∈

H2(P2,Z) be the hyperplane class of P2, and consider M1,0(P2,3H). It has 3 disjoint

components:

(1) Maps from nonsingular genus 1 curves to cubics

(2) Maps from an elliptic curve with one rational tail that contract the elliptic curve

and is a degree 3 map from P1

(3) Maps from an elliptic curve with two rational tails that contracts the elliptic curve

and maps to a line and a conic.

The dimension of 1) is the virtual dimension, which is 9. For 2), consider the following

diagram,

M1,1(P2,0) ×P2M0,1(P2,3H) M1,1(P2,0)

M0,1(P2,3H) P2

ev

ev

The dimension of 2) is the dimension of the fibre product, which is 10. For 3), the

maps from the rational tails are in the fiber productM0,1(P2,2)×P2M0,1(P2,1), which has

dimension 7. After adding the dimension of M1,2 to account for the contracted elliptic

curve, the dimension is 9. We see that M1,0(P2,3H) is reducible and impure.
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There is a case whenMg,n(X,β) is well-behaved,

Definition 2. We say X is convex if H1(C,f∗TX) = 0 for all f ∈Mg,n(X,β).

When X is convex, Mg,n(X,β) is a smooth Deligne-Mumford stack. Examples of

convex varieties include homogeneous spaces such as projective space, flag varieties, and

Grassmannians. When the moduli space is unobstructed, the virtual fundamental class

is equal to the fundamental class. In general, when the moduli space is smooth but not

of the expected dimension, the obstruction vector bundle Ob overMg,n(X,β) (with fiber

given by H1(C,f∗TX)) has constant rank, and the virtual fundamental class is given by,

[Mg,n(X,β)]vir = e(Ob) ∩ [Mg,n(X,β)]

Let Mg,n be the Artin stack of prestable curves and p ∶ Mg,n(X,β) → Mg,n the

morphism that forgets the map, only remembers the domain curve and does not stabilize.

Consider the complex,

E●Mg,n(X,β)/Mg,n
= (R●π∗f∗TX)∨

There is a morphism E●Mg,n(X,β)/Mg,n
→ L●Mg,n(X,β)/Mg,n

, which is a perfect relative obstruc-

tion theory for the map p. The moduli space Mg,n(X,β) is a proper Deligne-Mumford

stack for all g and n. By the work of [BF], there is a virtual fundamental class,

[Mg,n(X,β)]vir ∈ Avdim(Mg,n(X,β),Q)
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We refer to Section 2.2.2 for more details about virtual fundamental classes and obstruc-

tion theories.

2.1.3. Gromov-Witten invariants

Let γi ∈ H∗(X,Q). The genus g, n-pointed, Gromov-Witten invariant of class β corre-

sponding to the γi is defined to be

Ng,n(X,β;γ1 ⊗ . . .⊗ γn) ∶= ∫
[Mg,n(X,β)]vir

ev∗1γ1 ∧ . . . ev∗nγn

We will also write Ng,n(X,β;γ1 ⊗ . . .⊗ γn) as ⟨γ1, . . . , γn⟩Xg,n,β.

Notice that Ng,n(X,β;γ1 ⊗ . . .⊗ γn) = 0 if ∑i 2degC γi ≠ virdimMg,n(X,β).

We mention here some important properties of Gromov-Witten invariants. See [KM94],

[Lee] for more details.

(1) (Divisor axiom): Suppose γn ∈H2(X,Q), then,

Ng,n(X,β;γ1 ⊗ . . .⊗ γn) = (∫
β
γn)Ng,n−1(X,β;γ1 ⊗ . . .⊗ γn−1)

(2) (Fundamental axiom): Let 1 ∈ H0(X) be the identity in cohomology. Then

Ng,n(X,β;γ1 ⊗ . . . ⊗ 1) = 0. Equivalently, this conditions can be formulated on

virtual classes as for 1 ≤ i ≤ n + 1,

[Mg,n+1(X,β)]vir = ft∗i [Mg,n(X,β)]vir
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(3) (Point mapping axiom): For g = 0, β = 0, we have Ng,n(X,β;γ1 ⊗ . . . ⊗ γn) =

∫ γ1 ∪ γ2 ∪ γ3 when n = 3, and 0 otherwise.

2.1.3.1. Tautological Classes. There are natural characteristic classes one has on

Mg,n. Let E be the Hodge bundle which is a vector bundle overMg,n(X,β) whose fiber

above [f ∶ C →X] is given by H0(C,KC), or the vector space of holomorphic differentials

on C. Since E is bundle of rank g, we define the λi-classes as,

(2.2) λi ∶= ci(E), 1 ≤ i ≤ g

There are no holomorphic differentials for a genus 0 curve, and we define λ0 ∶= 1. Mum-

ford’s relation states that c(E)c(E∨) = 1. In particular, λ2g = 0 for all g > 0.

Let Li be a line bundle overMg,n(X,β) whose fiber above [f ∶ (C,p1, . . . , pn)→X] is

the cotangent line T ∗piC. The ψ-classes are defined as,

ψi ∶= c1(Li), 1 ≤ i ≤ n

2.1.3.2. Descendant invariants. Gromov-Witten invariants with ψ- or λ-classes present,

i.e.

∫
Mg,n(X,β)

n

∏
i=1
ev∗i (γi) ∪ ψaii ∪

g

∏
j=1
λ
bj
j

are called Hodge integrals. If the bj = 0 for all j, then they are called gravitational

descendants or descendant invariants. They are called stationary if the γi ∈H∗(X,Q) are
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point classes. Classically, when X = pt, then we have Witten’s conjecture which states

that,

∫
M0,n

ψa11 . . . ψann = (
n − 3

a1, . . . , an
)

Descendant invariants satisfy the following equations, s

(1) (String equation)

⟨ψa11 γ1, . . . , ψann γn,1⟩Xg,n+1,β =
n

∑
i=1
⟨ψa11 γ1, . . . , ψai−1i γi−1, ψ

ai−1
i γi, ψ

ai+1
i γi+1 . . . , ψ

an
n γn⟩Xg,n,β

(2) (Dilaton equation)

⟨ψa11 γ1, . . . , ψann γn, ψn+11⟩Xg,n+1,β = (2g − 2 + n)⟨ψa11 γ1, . . . , ψann γn⟩Xg,n,β

2.2. Intersection theory

We provide some notions of intersection theory that we will use. The main reference

is [Ful].

Let X be an algebraic variety. A cycle is a finite, formal sum of irreducible subvarieties

ofX with integer coefficients. A cycle is called k-dimensional if it consists of k-dimensional

subvarieties. Define Zk(X) be the group of k-dimensional cycles.

Suppose that V is a subvariety ofX×P1. The subgroup Rat(X) of rationally equivalent

classes is generated by cycles of the form [V0] − [V∞], where Vi denotes the subvariety of

V restricted to the fiber above t ∈ P1. The Chow group A∗(X) ∶= Z(X)/Rat(X) is the
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group of rational equivalence classes of cycles in X. The Chow group is graded by the

dimension of subvarieties, so we may write,

A∗(X) = ⊕kAk(X)

We write α ∼ β to mean two cycles α and β are rationally equivalent, and [α] to be the

rational equivalence class of α.

The Chow ring A∗(X) = ⊕kAk(X) is defined by Ak(X), or the group of codimension

k cycles of X. The multiplication is given by an intersection product that is defined as,

Ai(X)⊗Aj(X)→ Ai+j(X)

[α] ⋅ [β]↦ [α ∩ β]

The multiplication is well-defined due to the fact that if the intersection is not proper,

there exists a rationally equivalent cycle α′ ∼ α such that α′ ⋅ β is proper.

Suppose that X ⊂ Y is a closed subscheme with defining ideal I. The normal cone

CXY of X in Y is defined as,

CXY ∶= Spec(
∞
∑
n=0

In/In+1)

The normal sheaf of X in Y is defined as,

NX/Y ∶= Spec(Sym●(I/I2))
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When X is regularly embedded in Y , then CXY is a vector bundle. If there exist only

linear relations among elements in I, then the normal cone is the normal sheaf. Recall

that I/I2 is the conormal sheaf of X in Y .

We define a proper pushforward of cycles. Suppose that f ∶ X → Y is a proper

morphism. For any subvariety V ⊂ X, the image W = f(V ) is a subvariety of Y . Then,

the proper pushforward is defined as f∗[V ] = deg(V /W )[W ] where deg(V /W ) = [R(V ) ∶

R(W )] if dimW = dimV or else 0.

2.2.1. Gysin homomorphisms

The main reference if [Ful], Chapter 2. Let D ⊂ X be an effective Cartier divisor, and

α ∈ ZkX a k-cycle. Let j ∶ α ↪ X be the inclusion. We may define the intersection

product D ⋅ α as the Weil divisor class of [j∗D], which has support in Ak−1(∣D∣ ∩ α). We

have Gysin pullback maps i∗ ∶ ZkX → Ak−1D defined by i∗(α) =D ⋅ α.

Suppose we have a regular embedding i ∶ X ↪ Y of codimension d, a morphism

f ∶ Y ′ → Y , and the following fibre square,

X ′ Y ′

X Y

h

g f

i

The normal cone CX′/Y ′ is a closed subcone of g∗NXY . We define refined Gysin homo-

morphisms,

i! ∶ ZkY ′ → Ak−dX
′

∑
i

ni[Vi]↦∑
i

ni(X ⋅ Vi)
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They are given explicitly by the following composition of maps,

i! ∶ Zk(Y ′)
σÐ→ Zk(CX′/Y ′)↪ Ak(g∗NXY )

s∗Ð→ Ak−d(X ′)

where the specialization homomorphisms σ ∶ ZkY → Zk(CX/Y ) are defined by σ[V ] ↦

[CV ∩XV ], the middle map is induced by inclusion, and s∗ is flat pullback by the 0-section

X ′ in g∗NXY. On cycles, the map i! will send [V ] ∈ Zk(Y ′) to [CV ∩X′V ] ∈ Ak(g∗NXY ),

then intersect with the 0-section X ′ in g∗NXY. When Y ′ = Y and f = IdY , the homomor-

phisms are simply called the Gysin homomorphisms i∗ ∶ Ak(Y ) → Ak−d(X). We remark

that if V ⊂W , then i!([V ]) ⊂ h−1(W ), by Cartesian-ness of the diagram.

We have the following useful theorems related to pullbacks,

Theorem 7. (Theorem 3.3 of [Ful]) Let π ∶ E → X be a rank r vector bundle, then

the flat pullback π∗ ∶ Ak−r(X)→ Ak(E) is an isomorphism for all k.

Theorem 8 (Projection formula). Let f ∶X → Y be a proper morphism. Then,

f∗(f∗α ∩ β) = α ∩ f∗β

We also have the following excision sequence of Chow groups,

Lemma 1. Let Y be a closed subscheme of a scheme X, and let U = X ∖ Y . Let

i ∶ Y →X, j ∶ U →X be the inclusions. Then the sequence

AkY
i∗Ð→ AkX

j∗Ð→ AkU → 0

is exact for all k.
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Proof. See Proposition 1.8 of [Ful]. □

We present the excess intersection formula. Suppose that we have the fibre diagram,

X ′′ Y ′′

X ′ Y ′

X Y

q p

i′

g f

i

where i and i′ are regular embeddings of codimension d and d′ with normal bundles N

and N ′, respectively. Let E ∶= g∗N/N ′ be the quotient bundle of rank d − d′ on X ′.

Theorem 9. For any α ∈ Ak(Y ′′), we have

i!α = cd−d′(q∗E) ∩ i!α

in Ak−d(X ′′).

As a corollary, suppose we have fibre diagram,

X ′ Y ′

X Y

i′

g f

i

with i′ an isomorphism, then we have

i!α = cd(g∗N) ∩ α

Specializing to X ′ = Y ′ =X, we have the classical self-intersection formula,

i∗i∗α = cd(N) ∩ α

for all α ∈ A∗(X).
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2.2.2. Virtual Fundamental Classes

2.2.2.1. Motivation. Virtual fundamental classes allow one to do intersection theory on

moduli spaces that are not smooth or of pure dimension, and to account for anomalies such

as non-transverse intersections or non-transverse tangency conditions. If one considers the

classical enumerative question of finding the number of plane conics tangent to five lines,

a naive answer of 32 can be obtained initially by counting solutions to linear equations.

However one must account for degenerate contributions from the non-transverse locus of

double lines in order to get the correct answer 1.

The correct number can be computed with Segre classes. One finds the correct number

of conics by computing a certain class related to the Segre class of the Veronese embedding

P2 → P5, which is the locus of double lines. Virtual fundamental classes in some sense

generalize Segre classes used in the classical story to more general settings.

2.2.2.2. Obstruction Theories. We first define obstruction theories, in order to give

a definition of virtual fundamental classes.

Let f ∶X → Y be a morphism of DM-type between algebraic stacks. Let L●
X/Y be the

relative cotangent complex. If f is in fact a regular embedding of schemes, then L●
X/Y is

given by [I/I2 → 0], where I is the defining ideal of X ⊂ Y . If Y = pt, then L●
X/pt = Ω1

X ,

or the sheaf of Kähler differentials.

Definition 3. Let f ∶ X → Y be a morphism of DM-type between algebraic stacks. A

relative perfect obstruction theory E●
X/Y on X is a two-term complex of coherent sheaves

E● = [E−1 → E0] ∈ DbCoh(X) in perfect amplitude [−1,0], together with a map E●
X/Y →

L●
X/Y , that is an isomorphism on h0 and a surjection on h−1.
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Example 5. Recall the moduli space of stable mapsMg,n(X,β). Let π ∶ U →Mg,n(X,β)

be the universal curve and f ∶ U → X be the universal map. Let ρ ∶Mg,n(X,β) →Mg,n

be the morphism to the Artin stack of prestable curves that forgets the map. Define

E●Mg,n(X,β)/Mg,n
∶= (R●π∗f∗TX)∨. It is a relative perfect obstruction theory for ρ.

We say that the obstruction theory is trivial if E●
X/Y ≅ L●X/Y . Suppose that we have

morphisms X → Y → Z with Y → Z étale, then there is an isomorphism of perfect relative

obstruction theories EX/Y ≅ EX/Z .

2.2.2.3. Virtual Pullbacks. Virtual pullbacks were introduced in [Man08] and apply

in more general settings than flat or Gysin pullbacks.

The virtual pullback is defined with respect to an obstruction theory E●
X/Y . Suppose

that we have an embeddingX ↪ Y , and a vector bundle E●
X/Y of rank r with an embedding

of cones over X, CX/Y ↪ E●
X/Y . We have the following composition of maps,

A∗(Y )
σÐ→ A∗(CX/Y )

i∗Ð→ Ak(E●X/Y )
0!
E●
X/YÐÐÐ→ A∗−r(X)

where σ is the specialization homomorphism, and 0!E●
X/Y

is the inverse of flat pullback.

The virtual pullback f !
E●

X/Y
is the composition of the above maps. Note the similarity of

the definition of virtual pullbacks with that of refined Gysin homomorphisms. Indeed,

the latter are a special version of the former: when f ∶ X → Y is a smooth morphism

of schemes, the normal cone CX/Y is a smooth vector bundle, and the virtual pullback

f !
CX/Y

∶ A∗(Y )→ A∗(X) agrees with flat pullback of cycles. Like Gysin pullbacks, virtual

pullbacks also commute with proper pushforward.
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We are now ready to define virtual fundamental classes, as the intersection of the

0-section of an obstruction bundle E●
X/Y with the normal cone CX/Y . Suppose that Y is

pure dimensional, so that the fundamental class [Y ] is connected. We define the virtual

fundamental class of X with respect to the obstruction theory E●
X/Y to be the class,

[X]virE●
X/Y
∶= f !

E●
X/Y
[Y ] = 0!E[CX/Y ]

where 0!E denotes the inverse of the flat pullback π ∶ EX/Y →X.

Example 6. Let X ↪ Y be an embedding, with Y pure dimensional. Then, the

obstruction bundle EX/Y is a vector bundle with an embedding of cones CX/Y ↪ EX/Y .

When X ↪ Y is regular, then CX/Y is the normal vector bundle. There is an exact

sequence of vector bundles,

0→ NX/Y → EX/Y → E → 0

where the vector bundle E is defined by the sequence and called the excess bundle. The

virtual class is given by,

[X]virEX/Y
= ctop(E) ∩ [X]

Virtual fundamental classes are compatible under base change: suppose that we have

the fiber diagram

X ′ Y ′

X Y
f
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where f is an embedding of codimension d. The refined Gysin map f ! ∶ A∗(Y ′)→ A∗−d(X ′).

It is shown in [LT], Proposition 3.9 that

[X ′]vir = f ![Y ′]vir

2.2.2.4. Intrinsic normal cone. We make a remark about the construction of the

intrinsic normal cone in [BF]. Suppose that we have local charts Ui on X which embed

into ambient spaces Wi. We have normal cones CUi/Wi
for each i. There exists an action

of TWi∣Ui that preserves CUi/Wi
, and therefore we have a stack

CX ∣Ui ≅ CUi/Wi
/TWi∣Ui

The stack CX is called the intrinsic normal cone. It is called intrinsic because its definition

does not actually depend on the embeddings into Wi. A perfect obstruction theory E●X is

equivalent to the data of local charts Ui ⊂ X and embeddings Ui ⊆ Wi with Wi smooth,

with obstruction bundles EUi/Wi
such that the tangent-obstruction complexes [TWi∣Ui

→

EUi/Wi
] glue to form E●X . It gives rise to a global stack EX ∶= h1/h0(E●X) that is locally

defined as h1/h0(E●X)∣Ui
≅ EUi/Wi

/TWi∣Ui
. The rank of EX is rk(h1(E●X)) − rk(h0(E●X)).

The condition for perfectness guarentees that EX contains the intrinsic normal cone CX .

We refer to [BF], Section 2 for more details.

Remark 1. We shall use the notation [X,E●] from [BF] to mean the virtual class on

X given by the perfect obstruction theory E●.
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2.3. Toric Geometry

Toric varieties provide many useful examples of log schemes and log Calabi-Yau vari-

eties. In this section, we review some basic notions of toric geometry from [Ful].

Let M ≅ Zn be a lattice, and N =HomZ(M,Z) the dual lattice. Denote MR =M ⊗ZR

and NR = N ⊗ZR. Suppose that σ ⊂MR is a strictly convex, rational polyhedral cone, i.e.

a cone such that σ ∩ −σ = 0. Define the dual cone σ̌ to be the set

σ̌ = {n ∈ NR∣⟨n,m⟩ ≥ 0,∀m ∈ σ}

Definition 4. The affine toric variety Xσ associated to the cone σ ⊂ NR is the set,

Xσ ∶= Speck[σ̌ ∩N]

Definition 5. A fan Σ is a collection of strongly convex, rational cones in NR such

that 1) each face of a cone in Σ is a cone in Σ and 2) the intersection of two cones in Σ

is a face in each.

A toric variety XΣ is formed from a fan Σ, by appropriately gluing along faces, i.e. if

τ = σ1∩σ2 is the intersection of two cones σ1 and σ2, then Xσ1 and Xσ2 are glued along the

common open subset Xτ . In particular, every fan contains the cone {0}, which gives the

torus T ≅ (C∗)n. The one dimensional cones Σ[1] in the fan Σ correspond to codimension

1, T -invariant subvarieties of X.

We call the union of the divisors corresponding to the 1-dimensional cone the toric

boundary, and denote it by ∂XΣ, i.e.
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∂XΣ = ∪ρ∈Σ[1]Dρ

It is the complement of the big torus orbit. The divisor ∑ρ∈Σ[1]Dρ is anti-canonical (can

show it is rationally equivalent to the divisor associated to the holomorphic volume form

d(logx1)∧ . . .∧d(logxn). Hence, a toric variety with its toric boundary is naturally a log

scheme and a log Calabi-Yau variety.

Example 7. Consider the fan Σ in R2 whose one dimensional cones are given by

R≥0(1,0),R≥0(0,1), and R≥0(−1,−1). By analyzing the gluing of affine toric charts, one

see that this describes the fan of the projective plane P2. Adding the ray R≥0(0,−1) or the

sum of the two rays R≥0(−1,−1) +R≥0(1,0), corresponds to blowing up a toric fixed point

of P2. The resulting fan Σ′ is that of the first Hirzebruch surface F1 = P(OP1(−1)⊕OP1).

Figure 2.1. The fan of P2 on the left and fan of F1 on the right.

There is a useful characterization of smoothness of toric varieties. A toric varietiy XΣ

is smooth if and only if the intersection of each cone σ ∈ Σ with N ≅ Zn gives a Z-basis.

A toric variety XΣ is compact if and only if ∣Σ∣ = Rn.
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A refinement Σ′ of a fan Σ is a fan whose cones are contained in cones of Σ, and

the supports are equal ∣Σ′∣ = ∣Σ∣. A refinement Σ′ gives a proper birational map of toric

varieties XΣ′ →XΣ, and we have the following theorem,

Theorem 10 ([Ful]). There exists a refinement Σ′ of any fan Σ such that XΣ′ →XΣ

is a resolution of singularities.

In symplectic geometry, a manifoldM is called toric ifDiff(M) carries a Hamiltonian

action of the algebraic torus (C∗)n. Such an action endows M with a moment map

µ ∶ M → g ≅ Rn. By Delzant’s theorem, the image of µ is a convex polytope whose

vertices are images of fixed points of the torus action. The dimensions of the polytope

are determined by a polarization or choice of symplectic form on M .

2.4. Tropical Geometry

Tropical geometry was introduced as a more combinatorial, piecewise linear approach

to algebraic geometry. One works over the tropical semiring. Many classical theorems

in algebraic geometry such as Bezout’s theorem for intersection numbers have tropical

versions.

Let Γ be a connected graph. Let Γ[0] be the set of 0-dimensional vertices of h, Γ[1]

be the set of bounded edges, and Γ
[1]
∞ be the set of noncompact, unbounded edges of h.

Let w ∶ Γ[1] → N be a function that assigns a non-negative integer weight to each edge

E ∈ Γ[1]. We will sometimes write the weight of an edge E as wE.

Definition 6. A parametrized tropical curve is a map h ∶ Γ→ R2 such that,
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(1) If E ∈ Γ[1] and w(E) = 0, then h∣E is constant. Otherwise, h∣E is a proper

embedding of E into a line of rational slope in MR.

(2) Let V ∈ Γ[0], and let E1, . . . ,En be the edges adjacent to V . Let mi ∈ M be the

primitive tangent vector h(Ei) pointing away from h(V ). Then, we have,

n

∑
i=1
w(Ei)mi = 0

We say that a tropical curve is in the toric variety XΣ if its unbounded, noncompact

edges are translates of the one dimensional cones in Σ[1].

Note that the loops of tropical curves must be contracted, else the map h ∶ Γ → R2

would not be an embedding. The weights of non-compact edges are intersection numbers

of the curve with the toric divisors of XΣ.

Figure 2.2. A degree 1 tropical curve (left) and degree 2 tropical curve
(right) in P2.

Definition 7. Let TΣ be the free abelian group generated by the one cones Σ[1] of the

fan. For ρ ∈ Σ[1], denote by tρ ∈ TΣ the corresponding generator.

If h is a tropical curve in XΣ, the degree of h is ∆(h) defined by,
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∆(h) = ∑
ρ∈Σ[1]

dρtρ

where dρ is the number of edges E ∈ Γ[1]∞ with h(E) a translate of ρ. Denote ∣∆(h)∣ =

∑ρ∈Σ[1] dρ.

Definition 8. A tropical disc h ∶ Γ→ R2 is a tropical curve with a choice of univalent

vertex V∞, adjacent to a unique compact edge E∞. In addition, h satisfies the balancing

condition for all vertices V ≠ V∞. The edge E∞ need not be parallel to any translate of

ρ ∈ Σ[1].

Definition 9. The Maslov index MI(h) of a tropical disc h ∶ Γ→ R2 is,

MI(h) ∶= 2∣∆(h)∣

where ∣∆(h)∣ is computed without counting the edge E∞.

Definition 10. Given a tropical curve h ∶ Γ → R2, and a trivalent vertex V ∈ Γ0, let

mi and mj be distinct vectors that are any two of the three primitive outgoing vectors at

h(V ). Define

mV ∶= det(mi∣mj)

By the balancing condition at V , the number mV is well-defined, and is called the multi-

plicity of the vertex V . The multiplicity of an edge E of weight wE is defined as,

mE ∶=
(−1)wE+1

w2
E
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The multiplicity of h is defined as,

mh =
1

∣Aut(h)∣ ∏
V ∈Γ[0]

mV ∏
E∈Γ[1]

mE

Block and Göttsche defined a refinement of the classical multiplicity of tropical curves

[BG]. Let q = eih̵ be a formal variable for ”quantization”. Their definition has subse-

quently been used to relate q-refined tropical curve counts to higher genus logarithmic

Gromov-Witten invariants.

Definition 11 (q-multiplicity of tropical curves). Given a tropical curve h ∶ Γ → R2,

and a trivalent vertex V ∈ Γ0, define the q-multiplicity of V to be the expression,

mV (q) =
qmV /2 − q−mV /2

q1/2 − q−1/2

where mV is the classical multiplicity of V in Definition 10. The q-multiplicity of an edge

E of weight wE is defined as,

mE(q) ∶=
(−1)wE+1

wE

q1/2 − q−1/2
qwE/2 − q−wE/2

The q-multiplicity of h is defined as,

mh(q) =
1

∣Aut(h)∣ ∏
V ∈Γ[0]

mV (q) ∏
E∈Γ[1]

mE(q)

Remark 2. The weight of edges is sometimes ignored when defining the q-multiplicity

of tropical curves, as is the case in [Bou2], [BG].
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Remark 3. The expression for the multiplicity of tropical curves is motivated by the

proof of Mikhalkin’s genus 0 correspondence between counts of complex algebraic curves in

toric surfaces and counts of tropical curves with multiplicity in R2. For a tropical curve

h, the argument in [Mik] associates mh number of log curves to it. Nishinou-Siebert

generalized [Mik] to toric varieties of arbitrary dimensions [NS]. Bousseau genearlized

[Mik] to higher genus [Bou2]

2.5. Log Geometry

Let X be a scheme. Logarithmic geometry was first introduced by Illusie-Fontaine,

and Kato, to handle open and possibly singular varieties. Log Calabi-Yau spaces (X,D)

are naturally amenable to log geometry as X ∖D is Calabi-Yau. Log geometry was also

introduced into Gromov-Witten theory by Gross and Siebert, in order to develop a relative

theory for when the divisor is singular. Endowing source curves and target spaces with log

structures allows the possibility of negative tangency orders. Log geometry is especially

useful when one has a degeneration to a normal crossings variety. Such a degeneration is

log smooth despite the existence of the central singular fiber. In addition, nodal curves

are log smooth. We review some of the basic notions from log geometry that we will use.

Definition 12. A pre-log structure is a sheaf of monoidsMX on X with a morphism

of monoids αX ∶MX → OX , where the monoid structure on OX is given by multiplication

of functions. A log structure is a pre-log structure satisfying α−1(O∗X) ≅ O∗X .

Example 8. When MX = O∗X and αX is the inclusion, we have the trivial log struc-

ture.
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Example 9. Let i ∶ D ↪ X be a possibly singular divisor. Then the divisorial log

structure M(X,D) is defined as

M(X,D) ∶= i∗O∗X∖D ∩OX

or the regular functions on X that are invertible away from D. On open sets away from

D, the sheaf M(X,D) is isomorphic to O∗X .

Example 10. Let Q be a monoid, and consider (Speck,Q ⊕ k∗), where k is a field.

Let αX(x, q) ∶ Speck ⊕Q→ k∗ be given by

αX(x, q) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x q = 0

0 q ≠ 0

This defines a log structure, and (Speck,Q⊕k∗) is called the standard log point. We will

write the standard log point with monoid Q as ptQ.

Definition 13. A log scheme is a scheme X with a log structure MX .

Notation 1. We will often write the log scheme X with divisorial log structure D as

X(logD).

The characteristic or ghost sheaf MX is defined asMX ∶=MX/O∗X . A log structure

MX is called saturated if each of its stalks MX,x is saturated as a monoid, i.e. if it is

integral and whenever p ∈Mgp
X,x with mp ∈MX,x, then p ∈MX,x. The log structure is

fine, if locally on the log scheme, it is isomorphic to the pullback of the divisorial log
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structure of a (generalized) toric variety SpecZ[P ]. We say that a log scheme is fs if it is

fine and saturated.

Definition 14. A morphism of logarithmic schemes f ∶ (X,MX) → (Y,MY ) is a

morphism of a schemes, together with a morphism of sheaves of monoids f# such that

the following diagram is commutative,

f−1MY B

OY OX

f#

αY αX

f∗

Here f∗ is pullback of functions.

The notion of log smoothness is defined similarly as with schemes, with the infinitesi-

mal lifting criterion.

Definition 15. Let f ∶ X → Y be a morphism of fine log schemes. It is called log

smooth (respectively étale) if the underlying morphism of schemes is locally of finite pre-

sentation and for any commutative diagram,

B0 X

B1 Y

ϕ

j f

ψ

étale locally on B1, there exists a (respectively there exists a unique) morphism g ∶ B1 →X

such that φ = g ○ j and ψ = f ○ g. The map j is a strict closed immersion, and its closed

subscheme is defined by an ideal J with J2 = 0.

A morphism of log schemes f ∶X → Y is called strict if f−1MY ≅MX .
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Definition 16. The logarithmic tangent bundle TX log is defined as the sheaf of

derivations on X that also preserve the ideal sheaf of D. We sometimes write TX log

as TX(− logD).

Example 11. When X is a toric variety, we have TX log ≅ OdimX
X .

Suppose that X is a log scheme with normal crossings divisor D. Then D is locally de-

fined by the equation x1 . . . xr = 0, and the logarithmic tangent bundle is locally generated

by the derivations x1
∂
∂x1
, . . . , xr

∂
∂xr
, xr+1, . . . , xn.

The log tangent bundle fits into the exact sequence,

0→ TX(− logD)→ TX → ND → 0

We see that on D, the log tangent bundle agrees with the tangent bundle of D. Away

from D, it is isomorphic to the tangent bundle of X.

The sheaf of logarithmic 1-forms Ω1,log is defined as the subsheaf of j∗Ω1
X∖D (with

j ∶X ∖D ↪X) that is locally generated by dx1
x1
, . . . , dxrxr , xr+1, . . . , xn. We have the relation,

TX log =HomOX
(Ω1,log

X ,OX)

2.5.1. Log curves

Definition 17. A logarithmic or log curve is a logarithmically smooth and flat mor-

phism of fs log schemes π ∶X → S such that all geometric fibers are reduced and connected

schemes of pure dimension 1 that satisfies the following condition: if U ⊂ C is the non-

singular locus of π then there exist sections x1, . . . , xn of π such that,
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MC ∣U ≅ π∗MS ⊕
n

⊕
i=1
(xi)∗N

Kato provided a classification of log smooth curves. Suppose that f ∶ C → X is

log smooth morphism of fine saturated log schemes, with X = SpecA where (A,m) is a

complete local ring. Let 0 ∈X be the closed point, and let Q be the monoidMX,0. There

is a chart σ ∶ Q→ A defining the log structure on X. Let C0 be the fibre of f over 0 ∈W .

Then, etale locally at x ∈ C0, the log scheme C is isomorphic to one of the following three

cases:

(1) S = SpecA[u], where the log structure is induced by the chart,

Q→ OS, q ↦ f∗σ(q)

(2) S = SpecA[u, v]/(uv − t) for some t ∈ m, where the log structure is induced by

the chart,

N2 ⊕N Q→ OS, ((a, b), q)↦ uavbf∗σ(q)

The fibred sum is defined by the diagonal map N → N2 and N → Q is a homo-

morphism determined by f given by 1↦ α ∈ Q with σ(α) = t.

(3) S = SpecA[u] with the log structure induced by the chart,

N⊕Q→ OS, (a, q)↦ uaf∗σ(q)

In case (1), the log structure on C is just smooth pullback of the log structure on X.

In case (2), the curve C is nodal and (a, b) encodes the vanishing orders at the node. In

case (3), the N-summand comes from the stalk of a standard log point, which is thought
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(F1, F ) R≥0

Figure 2.3. The log scheme F1 with divisorial log structure given by a fiber
F (left) and its tropicalization R≥0 (right).

of as a marked point on C or a section ptN → C. The log structure on C is the sum of the

pullback log structure from X and the divisorial log structure given by the marked point.

2.5.2. Tropicalization

Tropicalization is a procedure that constructs a cone complex from a log scheme.

Definition 18. Given a log scheme X, its tropicalization is defined as,

Trop(X) ∶= ∐x∈X(Hom(MX,x,R≥0))/ ∼

where the equivalence relation is generated by dualizing generization mapsMX,x →MX,x′

when x is a specialization of x′.

Example 12. Let X be a toric variety with toric boundary ∂X as divisorial log struc-

ture. Its tropicalization is isomorphic to the fan Σ of X as generalized cone complexes.

Example 13. The tropicalization of the standard log point (Speck,Q ⊕ k∗) is given

by the cone R≥0.
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Example 14. Let F1 = P(OP1(−1)⊕OP1) be the first Hirzebruch surface, and F be a

P1-fiber of F1 when it is considered as a P1-bundle. Let (F1, F ) be the log scheme F1 with

F as divisorial log structure. Then, the tropicalization of (F1, F ) is given by a single cone

R≥0. See Figure 2.3.

We note that the tropicalization does not come with an embedding to NR.

Tropicalization is a covariant functor from the category of log schemes to the category

of cone complexes. Suppose that we have a stable log map,

C X

ptM S

f

π

where ptQ is the standard log point associated to a constant monoid sheaf Q. Tropical-

ization turns the stable log map into a diagram of cone complexes,

Σ(C) Σ(X)

R≥0 Σ(S)

Σ(f)

Σ(π)

When X is a toric variety, Σ(π) is a family of parametrized tropical curves mapping to

the fan Σ of X. The fiber over the origin 0 ∈ R≥0 is obtained by contracting the dual

graph of C to a graph with a unique vertex. The domain graphs of the tropical curves

are the dual intersection graphs of the stable log map.

2.6. Logarithmic Gromov-Witten Theory

Logarithmic Gromov-Witten invariants were introduced in relative Gromov-Witten

theory to deal with possibly normal crossings divisors. They play a key role in Gross-

Siebert mirror symmetry for log Calabi-Yau surfaces.
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2.6.1. Stable log maps

Definition 19. A stable log map determines a commutative diagram in the category

of log schemes,

C X

W S

f

π

where π is a log smooth, proper integral curve. For each geometric point w → W , the

restriction of f onto the fiber Cw is an ordinary stable map.

Definition 20. A class β of stable log maps to X is the following,

(1) The data β of an underlying ordinary stable map, i.e. the genus g of C, the

number n of marked points, and data A boudning the degree as described in [BF],

pg.12.

(2) Strict closed embeddings Z1, . . . , Zn ⊂X, together with sections si ∈ Γ(Zi, (M
gp

Zi
)∗).

We have a natural morphism of log structures f ♭ ∶ f∗MX →MC .

Definition 21. A stable log map (C/W,x1, . . . , xn, f) is of class β if the underlying

ordinary stable map is of type (g, n,A) and if for any i, we have im(f ○ xi) ⊂ Zi, and for

any geometric point w →W , the map,

uw ∶MZi,f(xi(w)) = (f∗MX)xi(w)
f ♭Ð→MC,xi(w) =MW,w ⊕N pr2Ð→ N

One should think of the map uw as encoding the contact order of the marked point xi.
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2.6.2. Moduli space of stable log maps

The moduli stack of stable log mapsM(X) is perhaps too large if arbitrary log structures

on the base W are allowed. Gross and Siebert consider a specific open substackM(X) ⊂

M(X) of basic stable log maps. Basicness is a condition that guarantees properties of

M(X) such as quasi-compactness, algebraicity, finite type, and stable reduction.

Consider a stable log map C → X over W = pt. Let Q ∶= MW and Px ∶= MX,f(x).

Let e ∈ C be a node. Recall that by Kato’s classification, MC,e ≅ Q ⊕N N2 for some

N→ Q,1↦ qe ≠ 0. Let η1, η2 be generic points of the components of C adjacent to e with

MC,ηi ≅ Q. We have the following diagram,

Pη1 Q

Pe Q⊕N N2 Q ×Q

Pη2 Q

fη1

fe

χ2

χ1

pr2

pr1

fη2

where the maps χi are induced by generizations e → ηi. The diagram defines a map

ue ∶MX,f(e) → Z by the property,

fη2 ○ χ2 − fη1 ○ χ1 = ueqe

If ue is nonzero, there is a unique primitive ũe ∈ Hom(M
gp

X,f(e),Z) and we > 0 such that

ue = weũe. The number we is called the weight of e. We define the monoid,

Q∨basic ∶= {((Vη)η, (le)e) ∈⊕
η
P ∨η ⊕⊕

e
N∣Vη2 ○ χ2 − Vη1 ○ χ1 = leue for all e}
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where the first sum runs over generic points η of irreducible components of C and the

second sum runs over nodes e. The monoid Q∨basic is called the basic monoid.

When W is the standard log point ptN, there is link between stable log maps and

tropical geometry. One can associate the dual of the basic monoid to a moduli of tropical

curves ([KLR], Section 4).

There is a well defined structure map Q→ Q∨basic (see [GS13], Definition 3.2).

Definition 22. A stable log map f ∶ C/W → X/S is called basic if the structure map

Q→ Q∨basic is an isomorphism.

By [GS13], Proposition 1.24, any stable log map arises from the pullback of basic

stable log map with the same underlying ordinary stable map.

Denote Mg,n(X/S,β) to be the moduli space of genus g, n-marked, basic stable log

maps to X in class β. We will sometimes abbreviate this space asM(X).

Theorem 11. If β is combinatorially finite (see [GS13], Definition 3.3), thenMg,n(X/S,β)

is a proper Deligne-Mumford stack of finite type over S.

The moduli space of curves naturally admits a divisoral log structure given by its

normal crossings boundary. We denote Mg,n to be the Artin stack of genus g, n-marked,

pre-stable log curves. We will sometimes abbreviate it as M.

Using Olsson’s results on log cotangent complexes [Ol], the moduli space of basic

stable log mapsM(X) carries a perfect obstruction theory in the sense of [BF] over the

log stack of pre-stable curves M. It is given by,

E● = (R●π∗f∗ΘX/S)∨ → L●M(X)/M
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where L●M(X)/M is the relative cotangent complex of the forgetful morphism ρ ∶M(X)→

M, and π and f are the universal maps for the universal curve ofM(X). The construction

of the virtual fundamental class [M(X)]vir then follows from the machinery of [BF], and

one define logarithmic Gromov-Witten invariants in the usual way by integrating incidence

conditions over [M(X)]vir.

2.6.2.1. Virtual dimension of stable log maps to X(logD). Now, suppose that

X is a log scheme equipped with a divisorial log structure given by a divisor D. Let

Mg,n+r(X/S,β)Ð→ℓ be the moduli space of genus g, basic stable log maps of class β with

n + r marked points, with the first n points having zero contact order with D, and the

other r points having prescribed contact orders
Ð→
ℓ = (ℓ1, . . . , ℓr) ∈ Zr>0 withD and satisfying

β ⋅D = ∑i ℓi. A generic curve of class β will intersect D at β ⋅D many points and at each

point with contact order 1. If we prescribe that some points have contact order ℓi > 1,

then each additional contact order cuts the virtual dimension down by 1. Hence, the

contact points will cut down the virtual dimension by ∑i(ℓi − 1). The virtual dimension

is given by,

virdimMg,n+r(X,β)ℓ = ∫
β
c1(TX) + (dim X − 3)(1 − g) + n −∑

i

(ℓi − 1)

= ∫
β
c1(TX) + (dim X − 3)(1 − g) + n + r − β ⋅D

We will at times suppress the notation
Ð→
ℓ and just writeMg,n+r(X/S,β)Ð→ℓ , when the

context is clear.
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2.6.3. Torically transverse maps

Suppose that X is a toric variety. The moduli space of basic stable log mapsM(X) has

a open substack of torically transverse curves.

Definition 23 ([NS]). A stable log map f ∶ C → X is torically transverse or tt if no

component maps dominantly to a toric divisor, or if it is disjoint from all toric strata of

codimension > 2.

In particular, torically transverse stable maps do not have irreducible components

mapping into the toric boundary. We will use the superscript tt to denote the open

substack of torically transverse curvesM(X)tt ⊂M(X). If theM(X) is log smooth over

M, thenM(X)tt is a dense open subset.

The open substack of torically transverse curves has trivial log structure. The stable

log map in which the target X has trivial log structure is isomorphic to the underlying

ordinary stable map under the functor the forgets the log structure. Hence, the log

Gromov-Witten invariants of trivial logarithmic structure onX coincide with the ordinary

Gromov-Witten invariants of X.

We have the following lemma on the intersection number of tt-maps,

Proposition 1 ([NS], Lemma 4.2). Suppose that X is a toric variety with divisorial

log structure given by the toric boundary ∂X. If φ ∶ C → X is torically transverse stable

log map, then,

∑
i

wiui = 0

where wi = degφ∗Di are the intersection number of φ(C) with each divisor Di, and ui are

primitive generators of the rays of the fan of X.
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Remark 4 (Log GW-invariants vs. relative GW-invariants). The central issue in

relative Gromov-Witten theory is that the limit of curves intersecting a divisor properly

may not have proper intersection, as the limit could sink into the divisor. An expanded

degeneration of the target is a finite number of P1-bundles or ”bubbles” glued to the divisor

in order to attain proper intersection. Jun Li shows that stable maps into the moduli of

expanded degenerations is proper and hence has a virtual fundamental class [Li]. When

the divisor is smooth, the log invariants are equivalent to relative invariants.

2.6.4. Birational invariance of log GW theory

We mention the main theorem of [AW], which gives a birational condition for when two

log schemes have equivalent log Gromov-Witten invariants.

Definition 24. A log modification is a proper, birational, and logarithmically étale

morphism X → Y.

Example 15. A toric blow up of toric varieties with the toric log structure is a log

modification.

Theorem 12 ([AW]). Given a logarithmic modification h ∶ X → Y inducing a pro-

jection π ∶M(X)→M(Y ), we have,

π∗[M(X)]vir = [M(Y )]vir
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CHAPTER 3

Scattering and Gross-Siebert mirror symmetry for P2: a primer

3.1. Scattering

Scattering diagrams encode wall crossing structures accounting for certain instanton

corrections. Wall crossing has appeared in many contexts including counts of holomorphic

discs in a Lagrangian fibration, quiver Donaldson-Thomas invariants, Gromov-Witten the-

ory of blow ups of toric surfaces, counting of geodesics of quadratic differential on a curve,

or N = 2, d = 4 supersymmetric gauge theory. They were used by Kontsevich-Soibelman

to construct non-Archimedean K3 surfaces. In many cases, various enumerative invari-

ants have been shown to satisfy/follow the Kontsevich-Soibelman wall crossing formula

(WCF) [KS]. In Gross-Siebert mirror symmetry, chambers of the scattering diagram

describe charts of the mirror toric degeneration. Given a nilpotent Lie algebra, one can

create a wall structure labelled with elements in the associated Lie group. We will not

define scattering in this generality, and we refer to [Man2] for definitions. Instead, we

will explain scattering in the (quantum) tropical vertex group [GPS].

3.1.1. Related work

Scattering diagrams can also be expressed in terms of multiplicities of tropical curves.

There is a 1-1 correspondence between walls and rational tropical curves, where a wall
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corresponds to an edge of a tropical curve (see [GPS], Theorems 2.4 and 2.8 or [Gro],

Definition 5.26).

Scattering diagrams can be defined more generally over by taking wall functions to

lie in a Lie group corresponding to a nilpotent Lie algebra. Mandel showed that walls of

scattering diagrams defined over various nilpotent Lie algebras can be expressed in terms

of tropical curves [Man2].

In [GPS], commutator formulas in the tropical vertex group are shown to be equiv-

alent to calculations of genus 0, relative Gromov-Witten invariants of toric surfaces. In

[Rei], the same commutator formulas are shown to be equivalent to computing Euler

characteristics of moduli of framed quiver representations.

From a 2-cyclic quiver Q, Bridgeland [Bri] defines Hall algebra scattering diagrams

that lie in the space of stability conditions of Q: each indecomposable representation of Q

defines a wall in a space of semi-slope stability conditions of Q. The scattering diagrams

in Examples 16 and 17 correspond to the scattering diagrams defined by the A2 quiver

and the Kronecker quiver, respectively. In [CM], it is shown the Hall algebra broken lines

do not satisfy the consistency lemma of [CPS].

In mirror symmetry for log Calabi-Yau surfaces with maximal boundary, the results

of [GPS] are used to prove consistency of the canonical scattering diagram, which is

defined by the maximal tangency log Gromov-Witten theory of a log Calabi-Yau surface

[GHKK].

In context of cluster varieties, Fock and Goncharov conjectured that the ring of regular

functions of the X cluster variety is parametrized by integral points of the tropicalization
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of the A cluster variety [FG1], [FG2]. Gross, Hacking, Keel, and Kontsevich proved the

conjecture by constructing certain scattering diagrams from cluster algebras [GHKK].

In symplectic geometry, Bardwell-Evans, Cheung, Hong, and Lin constructed scatter-

ing diagrams from Lagrangian Floer theory of special Lagrangian fibres [BCHL], and

show that their construction agrees with the scattering diagrams of [GPS], [GHK].

It is conjectured in [HSZ] that certain Baxter operators associated to the Skein algebra

of a torus satisfy the Pentagon relation and is proven in [Hu]. It invites the possibility

for enumerative interpretations of scattering with skein algebras.

3.1.2. The Tropical Vertex group

The tropical vertex group was introduced by Kontsevich and Soibelman in describing wall

crossing of Donaldson-Thomas invariants [KS]. Elements of the group are formal, one

parameter symplectomorphisms of the algebraic torus T ≅ SpecC[x±1, y±1] with respect

to the holomorphic symplectic form ω = dx
x ∧

dy
y . In this section, we recall some facts about

the group. We first give a definition of the tropical vertex group as the exponential of a

Lie algebra.

Let M ≅ Z2 be a lattice, and N =HomZ(M,Z), MR =M ⊗Z R. We will write n ⋅m or

m ⋅ n for the natural evaluation of n ∈ N on m ∈M . Let R be an Artin local C-algebra,

and mR ⊆ R be the maximal ideal. One may take R to be C[t]/(tk) for any k.

For a C-algebra A, we define A⊗̂CR ∶= lim←A ⊗C R/mk
R. For this section, we let

A = C[M]. Define the module of log derivations to be,

Θ(C[M]⊗̂CR) =Hom(M,C[M]⊗̂CR) = (C[M]⊗̂CR)⊗ZN
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A log derivation ξ induces an ordinary derivation ξ′ of C[M]⊗̂CR over R by,

ξ′(zm) = ξ(m)zm

We write an element a ⊗ n ∈ (C[M]⊗̂CR) ⊗Z N as a∂n. It is an ordinary derivation on

C[M] defined as,

(a∂n)(zm) = a(m ⋅ n)zm

Define gR ∶= mRΘ(C[M]⊗̂CR). It is naturally a Lie algebra with bracket defined by,

[zm∂n, zm
′

∂n′] = (zm∂n(zm
′))∂n′ − (zm

′

∂n′(zm))∂n

Given ξ ∈ gR, we obtain an element exp(ξ) ∈ AutR(C[M]⊗̂CR) defined as,

exp(ξ)(a) = Id(a) +
∞
∑
i=1

(ξ′)i(a)
i!

which is well-defined since R is complete.

Let hR ⊆ gR be defined as,

(3.1) hR ∶= ⊕
m∈M∖{0}

Czm(mR ⊗m⊥)

which is closed under the Lie bracket for gR. The tropical vertex group VR is defined

as,

VR ∶= {exp(ξ)∣ξ ∈ hR}
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Remark 5. The parameter t encodes consistency of the scattering diagram and sub-

sequently the construction of the mirror toric degeneration. The exponent of tk is given

by the image of a monomial zm of a piecewise linear function φ.

3.1.3. Scattering diagrams

In this section, R is again a local, Artinian C-algebra, and C[M] is the algebra of the

torus given by Laurent polynomials.

Definition 25. A ray or wall is a pair (σ, fσ) such that,

(1) σ ⊆MR and σ = xσ+R≥0mσ for some xσ ∈MR and mσ ∈M is a primitive direction

vector of the ray.

(2) fσ ∈ C[z±mσ]⊗̂CR.

(3) fσ ≡ 1 mod z±mσmR

We call fσ the wall function or wall automorphism of σ. The choice of sign for z±mσ is

determined by whether the ray is incoming or outgoing. We follow the convention that +

means incoming and − means outgoing.

Definition 26. A scattering diagram D is a set of rays such that for every power

k > 0, there are only finitely many rays (σ, fσ) ∈D with fσ /≡ 1 mod mk
R.

Definition 27. For a scattering diagram D, we define the support of D to be,

Supp(D) ∶= ⋃
σ∈D

σ ⊆MR

and we say that the joints of D are defined as,
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Sing(D) ∶= ⋃
σ∈D

∂σ ∪ ⋃
σ1,σ2,

dimσ1∩σ2=0

σ1 ∩ σ2

where ∂σ ∶= xσ. We call the connected components of MR ∖ Supp(D) the chambers of D.

3.1.4. Consistency

Given a scattering diagram Dl consistent to order ml
R, suppose that γ ∶ [0,1] → MR is

an immersed path that transversely crosses walls {(σi, fσi)∣1 ≤ i ≤ n} at time points ti

with 0 < t1 < . . . < tn < 1. For each wall σi, let ni ∈ N be the normal vector satisfying

⟨ni, γ′(ti)⟩ < 0. Define the path ordered product Φγ,l in Dl to be,

Φγ,l =
n

∏
i=1

exp(log(fσi)∂ni
)

Define Φγ(zm) ∶= liml→∞Φγ,l(zm).

Definition 28. A scattering diagram D is consistent to order k if for any closed loop

γ, we have θγ = Id mod mk
R. We say it is consistent if θγ = Id for any γ.

We have the following lemma, due to Kontsevich and Soibelman.

Lemma 2 ([KS], ”Kontsevich-Soibelman consistency lemma”). Let D be a scattering

diagram. Then there exists a unique consistent scattering diagram S(D) obtained from D

by adding only outgoing rays.

Proof. We prove the statement by induction on R/mk
R for k ≥ 1, showing that there

exists a Dk such that,
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Φγ,Dk
≡ Id mod mk

R

for all closed loops γ. When k = 1, we have fσ ≡ 1 mod mR by definition. Hence, we can

take D1 =D.

Now, suppose that we have constructed Dk that is consistent to R/mk
R, i.e.

∏
(σ,fσ)∈Dk−1

exp(log(fσi)∂ni
) ≡ 1 mod mk

R

Let D′k ⊂Dk be the set of rays σ′ such that fσ′ /≡ 1 mod mk+1
R . Let p ∈ Sing(D′k), and γp a

simple closed loop around p that does not contain any other points of Sing(D′k). Clearly,

we have,

Φγp,Dk
≡ Φγp,D′k

mod mk+1
R

By the induction hypothesis, we can uniquely write,

Φγp,D′k
= exp

⎛
⎝

lp

∑
i=1

log(fσi)∂ni

⎞
⎠

with fσi ∈ C[z±mσi ]⊗̂CR/mk
R. Let

Dp ∶= {(p +R≥0mσi , exp(− log(fσi)∂ni
))∣1 ≤ i ≤ lp}

Since mk
R ⋅mk

R ⊂ m2k
R ≡ 0 mod mk+1

R , we have that,

Φγp,D′k∪Dp ≡ 1 mod mk+1
R
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Let Dk+1 ∶= Dk⋃pDp, i.e. we add the necessary rays for consistency back to Dp. We see

that Dk+1 is consistent modulo mk+1
R . Thus, we take S(D) to be the union of all Dk for

all k. It may have infinitely many rays. □

We will write the consistent completion S(D) also as D∞.

Next, we highlight that cluster transformations are specific instances of elements in

the tropical vertex.

3.1.5. Poisson torus algebra

Recall that M ≅ Z2 is a lattice, and consider the group algebra C[M]. Elements in C[M]

are finite C-linear combinations of formal variables or monomials zm for m ∈M , i.e.

C[M] = ⊕
m∈M

Czm

The multiplication is defined as zm ⋅ zm′ = zm+m′ . Choose an orientation on M , i.e. a

skew-symmetric, bilinear form ⟨, ⟩ so that ⋀2M ≅ Z. Let {m1,m2} ⊂M be a Z-basis with

⟨m1,m2⟩ = 1. Then, we may write C[M] = C[z±m1 , z±m2], and hence SpecC[M] ≅ (C∗)2.

We denote T to be the algebraic torus (C∗)2.

Characters of T form a lattice HomZ(T,C∗) and are spanned by elements of the form,

(x, y)↦ xayb

for m ∶= (a, b) ∈ Z2. We denote the character as zm for z = (x, y) ∈ (C∗)2. We see that

characters form a basis of the algebra of functions Γ(OT ) of T , or C[M] as above.

We define the bracket on Γ(OT ) by,
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{zm, zm′} ∶= ⟨m,m′⟩zm+m′

which makes Γ(OT ) a Poisson algebra. It has a corresponding algebraic symplectic form

Ω = dz1
z1
∧ dz2

z2
.

3.1.6. Cluster transformations are in the Tropical Vertex

Now, let R = C[[t]], and consider the tropical vertex VR. For any vector (a, b) ∈ Z2, we

have an automorphism T(a,b),f ∈ VR given explicitly by,

T(a,b),f(x) = f−bx, T(a,b),f(y) = fax

where the function f is of the form f = 1 + txaybg(xayb, t) ∈ C[M]⊗̂CC[[t]] with g(z, t) ∈

C[z][[t]].

We notice that cluster transformations of the torus algebra Γ(OT ) are specific examples

of elements in the tropical vertex group, and indeed Γ(OT ) ⊂ hR as Lie algebras: suppose

we have a wall σ equipped with the wall function,

fσ = 1 + ctkz−mσ

with c ∈ C and k ∈ N. The wall crossing at σ is given by,

exp(log(fσ)∂nσ) ⋅ zm = zmfnσ ⋅m
σ

which is indeed the cluster transformation,
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(3.2) zm → zmfnσ ⋅m
σ

3.1.7. Examples of scattering

Example 16. Suppose that we have two incoming walls (σ1, fσ1) = (R≥0m1,1 + zm1)

and (σ2, fσ2) = (R≥0m2,1 + zm2) with ⟨m1,m2⟩ = 1 that meet at the origin. We complete

this to a consistent diagram by adding 3 outgoing rays, namely (σ3, fσ3) = (R≥0(−m1),1+

zm1), (σ4, fσ4) = (R≥0(−m2),1+zm2) and (σ5, fσ5) = (R≥0(−m1−m2),1+zm1+m2). One can

check by hand that,

fσ1fσ2(zm) = fσ4fσ5fσ3(zm)

σ1

σ2

σ3

σ4 σ5

●

Figure 3.1. Two ingoing walls σ1 = (R≥0(−1,0),1 + z(−1,0)) and σ2 =
(R≥0(0,−1),1 + z(0,−1)). Consistency is obtained by adding three out-
going walls σ3 = (R≥0(1,0),1 + z(−1,0)), σ4 = (R≥0(0,1),1 + z(0,−1)), and
σ5 = (R≥0(1,1),1 + z(−1,−1)).
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Example 17 ([BBvG]). Suppose that we have two incoming walls (σ1, fσ1) = (R≥0m1,1+

zm1) and (σ2, fσ2) = (R≥0m2,1 + zm2) with ⟨m1,m2⟩ = 2 that meet at the origin. For sim-

plicity, let’s assume m1 = (−1,0) and m2 = (0,−2). Consistency is obtained by adding the

following 3 families of outgoing rays,

(1) (σnm1+(n+1)m2
, fnm1+(n+1)m2

) ∶= (R≥0(−nm1−(n+1)m2),1+znm1+(n+1)m2), for n ≥ 0

(2) (σ(n+1)m1+nm2
, f(n+1)m1+nm2

) ∶= (R≥0(−(n+1)m1−nm2),1+z(n+1)m1+nm2), for n ≥ 0

(3) A single ray (σm1+m2 , fm1+m2) ∶= (R≥0(−m1 −m2), (1 − zm1+m2)−2)

Consistency of the diagram implies that,

f(−1,0)f(0,−2) = f(0,−2)f(1,−4)f(2,−6) . . . f−2(−1,−2) . . . f(−3,−4)f(−2,−2)f(−1,0)

σ1

σ2

σ3

σ4

●

. . .
. . .

Figure 3.2. Scattering of two ingoing rays with directions m1 and m2 satis-
fying ⟨m1,m2⟩ = 2, with an infinite number of outgoing rays in the consistent
diagram.
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Remark 6. When ⟨m1,m2⟩ = 3, the resulting outgoing walls from consistency do not

seem to have an explicit description, however there is a region in which the walls are

dense.

3.2. Quantum scattering

Cluster varieties admit quantizations by suitably quantizing the Poisson torus algebra.

Quantum cluster transformations are given by conjugation by the quantum dilogarithm.

As in the classical case, quantum cluster transformations are elements of the quantum

tropical vertex group of Kontsevich-Soibelman. We quantize the scattering diagram ob-

tained from the Gross-Siebert program by taking wall functions to be automorphisms

of the quantum torus algebra. We show that quantizing maintains consistency of the

scattering diagram.

3.2.1. Related work

Quantum scattering has appeared in various work connecting higher genus Gromov-

Witten theory with tropical geometry. Filipini and Stoppa first showed that qauntum

wall crossing is related to Block-Gottsche multiplicity of tropical curves [FS]. Bousseau

quantizes the canonical scattering diagram of [GHK] and consequently constructs a quan-

tization of the GHK mirror family to a log Calabi-Yau surface [Bou4]. In [Bou6], it is

shown that consistency of scattering diagrams in the quantum tropical vertex can be

phrased in terms of higher genus log Gromov-Witten invariants with λg-insertion of toric

surfaces, analogous to the classical result of [GPS]. By studying the quantized scatter-

ing diagram of an affine cubic surface, Bousseau also shows that the resulting algebra
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of quantum broken lines is isomorphic to the skein algebra of a 4-punctured sphere, and

proves positivity of the bracelets basis [Bou5].

3.2.2. Quantum torus algebra

Recall that we have the lattice M ≅ Z2, and a bilinear form ⟨⋅, ⋅⟩ from choosing an orien-

tation on M so that ⋀2M ≅ Z. Let q = eih̵ be a formal variable. By the quantum torus

algebra Γ̂(OT ), we mean the following algebra,

Γ̂(OT ) ∶= C[q±
1
2 ][M] = ⊕

m∈M
C[q± 1

2 ]zm

It recovers the Poisson torus algebra Γ(OT ) when q = 1. We write elements of Γ̂(OT ) as

ẑm for m ∈M . The noncommutative multiplication is defined as,

ẑm ⋅ ẑm′ = q
⟨m,m′⟩

2 ẑm+m
′

which is equivalent to the rule ẑm ⋅ ẑm′ = q⟨m,m′⟩ẑm′ ⋅ ẑm. The variable q is in the center of

the algebra. When ⟨⋅, ⋅⟩ is the usual determinant of matrix formed from the two vectors,

notice that we have the relation ẑ(1,0)ẑ(0,1) = qẑ(0,1)ẑ(1,0) or xy = qyx.

3.2.3. Quantum scattering diagrams

The tropical vertex has a quantum version, which we call the quantum tropical vertex,

denoted by Vq
R. It first appeared in Kontsevich-Soibelman, and used by Bousseau to

generalize [GPS]. The Lie algebra corresponding to Vq
R is given by,



71

hqR ∶= ⊕
m∈M∖{0}

C[q±12 ]ẑm(mR ⊗m⊥)

(see Equation 3.1 for comparison). Then Vq
R ∶= exp(h

q
R). Quantum cluster transformations

are also elements of Vq
R.

We consider scattering in the quantum tropical vertex. The definitions in classical

scattering can be quantized. For simplicity, we will illustrate quantization of cluster

transformations.

Definition 29. Replacing z by ẑ in Definitions 25 and 26 for scattering diagrams, we

obtain a quantum scattering diagram D̂. The Kontsevich-Soibleman consistency theorem

also applies to quantum scattering diagrams.

3.2.4. Quantum wall functions

Recall that R is a local Artinian C-algebra. Similar to the classical case, the data of a

quantum wall (σ, f̂σ) consists of a ray σ and a quantized wall function f̂σ. Recall that

fσ ∈ C[z±mσ]⊗̂CR and satisfies fσ ≡ 1 mod z±mσmR. We write fσ (with σ an outgoing

ray) in the form,

fσ =∑
k≥0

ckz
−kmσ , ck ∈ R

Definition 30. The quantization of the wall function fσ is defined to be,

f̂σ ∶=∑
k≥0

ckq
−k
2 ẑ−kmσ ∈ C[q±12 ][z±mσ]⊗̂CR.
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It satisfies limq→1 f̂σ = fσ, and f̂σ ≡ 1 mod q
±1
2 z±mσmR. For j ∈ Z, we define the following

functions,

f̂σ,j ∶=∑
k≥0

ckq
−j− k

2 ẑ−kmσ ∈ C[q±12 ][z±mσ]⊗̂CR.

Notice that f̂σ = f̂σ,0.

Example 18. Suppose we have an outgoing ray σ = R≥0(−1,3) with wall function,

fσ = 1 + t3z(1,−3)

Then, its quantized wall functions are,

f̂σ = 1 + q
−1
2 t3ẑ(1,−3), f̂σ,j = 1 + q−j−

1
2 t3ẑ(1,−3), j ∈ Z

Definition 31. Suppose we have a quantum wall function f̂σ satisfying f̂σ ≡ 1 mod q
±1
2 z±mσmR.

We write

log f̂σ =∑
k≥1

dkẑ
±kmσ , dk ∈ C[q

±1
2 ]⊗̂CR

Define the Hamiltonian Ĥσ associated to f̂σ by,

Ĥσ ∶=∑
k≥1

dk
q−k − 1 ẑ

±kmσ

Example 19. Let f̂σ = 1 + q
−1
2 t3ẑ(1,−3). We have
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log f̂σ =∑
k≥1

(−1)k+1
k

q
−k
2 t3kẑk(1,−3)

= −∑
k≥1

(−1)k
k

q−k − 1
q

k
2 − q−k2

t3kẑk(1,−3)

The Hamiltonian associated to f̂σ is,

Ĥσ = −∑
k≥1

(−1)k
k

t3kẑk(1,−3)

q
k
2 − q−k2

3.2.5. Quantum cluster transformations

The classical dilogarithm function can be used to express volumes of hyperbolic manifolds.

We refer to [FK] for facts about the quantum dilogarithm.

Definition 32. The quantum dilogarithm Ψq(ẑm) is the following function on the

quantum torus algebra Γ̂(OT ),

Ψq(ẑm) ∶= exp(−∑
k≥1

1

k

ẑkm

q
k
2 − q−k2

) =∏
k≥0

1

1 − qk+ 1
2 ẑm

We see that the Hamiltonian associated to Ψq is −∑k≥1 1
k

ẑkm

q
k
2 −q

−k
2
.

The quantum dilogarithm satisfies Ψq−1 = Ψ−1q , and hence Ad−1
Ψq(ẑm) = AdΨq−1(ẑm). Con-

jugation by the quantum dilogarithm or AdΨq(ẑm) is an automorphism of the quantum

torus algebra. As q → 1, AdΨq(ẑm) becomes the classical cluster transformation in Equa-

tion 3.2.
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3.2.6. Quantum wall automorphism

Here we explain the quantum wall automorphism for the quantum tropical vertex group

Vq
R. Quantum cluster transformations are specific elements in Vq

R.

Definition 33. Let (σ, f̂σ) be a quantum wall with Hamiltonian Ĥσ. The quantum

wall automorphism associated to (σ, f̂σ) is Adexp(Ĥσ) ∈ V
q
R.

Lemma 3. The quantum wall automorphism Adexp(Ĥσ) can be rewritten as,

ẑm →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẑm∏⟨±mσ ,m⟩−1
j=0 f̂σ,j, for ⟨±mσ,m⟩ ≥ 0

ẑm∏∣⟨mσ ,m⟩∣−1
j=0 f̂−1σ,−j−1, for ⟨±mσ,m⟩ < 0

with the f̂σ,j defined in Definition 30.

The inverse quantum wall automorphism Ad−1
exp(Ĥσ)

= Adexp(−Ĥσ) can be rewritten as,

ẑm →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẑm∏⟨±mσ ,m⟩−1
j=0 f̂−1σ,j, if ⟨±mσ,m⟩ ≥ 0

ẑm∏∣⟨mσ ,m⟩∣−1
j=0 f̂σ,−j−1, if ⟨±mσ,m⟩ < 0

A universal choice of sign is made throughout if σ is ingoing (+) or outgoing (−).

Proof. This is described in [Bou3], Lemma 3.3. We give here the expression for the

second map. Write,

Ĥσ =∑
k≥1

Hkẑ
−kmσ ,Hk ∈ C[q

±1
2 ]⊗̂CR
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Suppose ⟨mσ,m⟩ < 0. Then we have,

Ad−1
exp(Ĥσ)

(ẑm) = Adexp(−Ĥσ)(ẑ
m) = exp(−Ĥσ)ẑm exp(Ĥσ)

= exp(−∑
k≥1

Hkẑ
−kmσ)ẑm exp(∑

k≥1
Hkẑ

−kmσ)

= ẑm exp(∑
k≥1
(1 − q⟨−kmσ ,m⟩)Hkẑ

−kmσ)

= ẑm exp(∑
k≥1

(1 − q⟨−kmσ ,m⟩)
1 − qk (1 − qk)Hkẑ

−kmσ)

= ẑm exp(−∑
k≥1

∣⟨mσ ,m⟩∣−1
∑
j=0

qkj(qk − 1)Hkẑ
−kmσ)

= ẑm
∣⟨mσ ,m⟩∣−1
∏
j=0

f̂−1σ,−j−1

The case when ⟨mσ,m⟩ ≥ 0 is similar. □

Remark 7. When writing exp(Ĥσ), we strictly mean the derivation given by the

Poisson bracket with Ĥ. We refer to [Bou2], Section 1.3 for more details.

Example 20. Let (σ, f̂σ) be the quantum wall in Example 19 with mσ = (−1,3). The

Hamiltonian associated to f̂σ is,

Ĥσ = −∑
k≥1

(−1)k
k

t3kẑk(1,−3)

q
k
2 − q−k2
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By Lemma 3, the quantum wall automorphism associated to (σ, f̂σ) is,

ẑm →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẑm(1 + q−12 t3ẑ(1,−3))(1 + q−32 t3ẑ(1,−3)) . . . (1 + q−⟨mσ ,m⟩+ 1
2 t3ẑ(1,−3)), if ⟨mσ,m⟩ ≥ 0

ẑm(1 + q 1
2 t3ẑ(1,−3))−1(1 + q 3

2 t3ẑ(1,−3))−1 . . . (1 + q∣⟨mσ ,m⟩∣− 1
2 t3ẑ(1,−3))−1, if ⟨mσ,m⟩ < 0

with inverse,

ẑm →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẑm(1 + q−12 t3ẑ(1,−3))−1(1 + q−32 t3ẑ(1,−3))−1 . . . (1 + q−⟨mσ ,m⟩+ 1
2 t3ẑ(1,−3))−1, if ⟨mσ,m⟩ ≥ 0

ẑm(1 + q 1
2 t3ẑ(1,−3))(1 + q 3

2 t3ẑ(1,−3)) . . . (1 + q∣⟨mσ ,m⟩∣− 1
2 t3ẑ(1,−3)), if ⟨mσ,m⟩ < 0

3.2.7. Path ordered quantum product

We define here for completeness a path ordered product in the quantum scattering dia-

gram. Let γ ∶ [0,1]→ R2 be an immersed path that transversely crosses walls σ1, . . . , σk at

points γ(ti) with ti < tj for i < j in the scattering diagram Dl for some l > 0. At each wall

σi, we apply Ad
sgn⟨±mσi ,γ

′(ti)⟩
Φq(ẑmσi ) , where the ± is chosen according to whether σi is ingoing

(+) or outgoing (−). Notice that this rule takes into account whether the wall is ingoing

or outgoing and the orientation of the crossing. The path ordered quantum product Φ̂γ

associated to γ in Dl is defined as,

Φ̂γ,l(ẑm) ∶= Ad
−sgn⟨±mσk

,γ′(tk)⟩
Φq(ẑ±mσk ) ○ . . . ○Ad−sgn⟨±mσ1 ,γ

′(t1)⟩
Φq(ẑ±mσ1 ) (ẑm)

Define Φ̂γ(ẑm) ∶= liml→∞ Φ̂γ,l(ẑm), which is a path ordered product in S(D).
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3.2.8. Examples of quantum scattering

Example 21. Suppose that we have an ingoing wall (σ1, f̂σ1) = (R≥0(−1,0),1+q
−1
2 ẑ(−1,0))

and an outgoing wall (σ2, f̂σ2) = (R≥0(1,0),1 + q
−1
2 ẑ(−1,0)) Suppose that we have a loop

around the origin that transversely intersects the walls σ1 and σ2 at times t1 < t2, with

γ′(t1) = (0,−1) and γ′(t2) = (0,1). Then, the automorphism given by the path γ is Φ̂γ = Id

with Φ̂γ(ẑm) = Ad−1Ψq(ẑmσ )AdΨq(ẑm(f̂σ))(ẑm) = ẑm.

Example 22. Suppose that we have two incoming rays,

(σ1, f̂σ1) = (R≥0(−1,0),1 + q
−1
2 ẑ(−1,0))

(σ2, f̂σ2) = (R≥0(0,−1),1 + q
−1
2 ẑ(0,−1))

and three outgoing rays,

(σ3, f̂σ3) = (R≥0(1,0),1 + q
−1
2 ẑ(−1,0))

(σ4, f̂σ4) = (R≥0(1,1),1 + q
−1
2 ẑ(−1,−1))

(σ5, f̂σ5) = (R≥0(0,1),1 + q
−1
2 ẑ(0,−1))

The diagram in Figure 3.1 is a consistent quantum scattering diagram after replacing σ

with σ̂.

Let γ1 be a path starting in the upper left quadrant and crossing σ1 and then σ2 before

ending in the lower right quadrant. Let γ2 be a path starting in the upper left quadrant

and crossing σ5, σ4 and σ3, before ending in the lower quadrant. We check that Φγ1 = Φγ2 .
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By the rule for the quantum path ordered product, we have that,

Φγ1 = AdΨq(ẑ(0,−1))AdΨq(ẑ(−1,0))

and

Φγ2 = AdΨq(ẑ(−1,0))AdΨq(ẑ(−1,−1))AdΨq(ẑ(0,−1))

Indeed, Φγ1 = Φγ2 by the Pentagon identity for the quantum dilogarithm 1. Thus, the

diagram is consistent.

Remark 8. The q-multiplicity of tropical curves naturally appears in the application

of quantum cluster transformations. Recall that the q-multiplicity of a vertex V of a

tropical curve (Definition 11) is defined as,

mV (q) =
q

mV
2 − q

−mV
2

q
1
2 − q−12

Notice these quantities have a q↦ q−1 symmetry.

Suppose we have a quantum wall function f̂σ = 1 + q
−1
2 tkẑ−mσ with ⟨mσ,m⟩ ≥ 0. The

q-wall crossing of ẑm is,

ẑm
⟨mσ ,m⟩−1
∏
j=0

f̂σ,j = ẑm(1 + q
−1
2 tkẑ−mσ)(1 + q−32 tkẑ−mσ) . . . (1 + q−⟨mσ ,m⟩+ 1

2 tkẑ−mσ)

1The Pentagon Identity [FK] states that if ⟨m,m′⟩ = 1, then

Ψq(ẑ
m
)Ψq(ẑ

m′
) = Ψq(ẑ

m′
)Ψq(ẑ

m+m′
)Ψq(ẑ

m
)
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Consider the tk-term in the product, which is,

ẑm(
⟨mσ ,m⟩−1
∑
j=0

q
−1
2
−j)ẑ−mσ = q

⟨mσ,m⟩
2 (

⟨mσ ,m⟩−1
∑
j=0

q
−1
2
−j)ẑm−mσ

= (q
⟨mσ,m⟩−1

2 + . . . + q
−⟨mσ,m⟩+1

2 )ẑm−mσ

= [⟨mσ,m⟩]qẑm−mσ

The coefficient (q ⟨mσ,m⟩−1
2 + . . .+q−⟨mσ,m⟩+1

2 ) is the quantum multiplicity of a vertex with

two outgoing edges mσ and m. Hence, a quantum broken line can be completed to q-refined

tropical curve by adding the wall it scatters at.

3.2.9. Computational schema of quantum wall crossing for (P2,E)

We explain the computational schema of quantum wall crossing for (P2,E). Starting with

the quantized Hori-Vafa potential in the central chamber, we wall cross vertically upwards

(see Section 3.3 for definitions and Figure 3.5 for the scattering diagram). We refer to

Appendix A of [GRZ] for a list of the first 18 wall functions in the classical case; by our

convention, each of the walls there are outgoing except for walls f17 and f18.

The quantization of the first 7 walls for P2 in the scattering diagram consistent to

order t9 is given by,

● f̂1 = q
−1
2 t(1 + x−1) n1 = (0,−1)

● f̂2 = 1 + q
−1
2 t3xy−3 n2 = (−3,−1)

● f̂3 = 1 + q
−1
2 t3x−1y−3 n3 = (3,−1)

● f̂4 = 1 + 15q
−1
2 t9x−1y−9 n4 = (9,−1)

● f̂5 = 1 + q
−1
2 t9x2y−9 n5 = (−9,−2)
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● f̂6 = 1 + q
−1
2 t9x−2y−9 n6 = (9,−2)

● f̂7 = 1 + 3q
−1
2 t6xy−6 n7 = (−6,−1)

Aside from f̂1, we quantized fσ according to Definition 30. The first wall is special since

f̂1 ≢ 1 mod (t). The quantization f̂1 particularly simplifies subsequent quantum wall

crossing, in which resulting coefficients coincide with q-multiplicity of tropical curves.

We wrote a Sage program implementing quantum wall crossing of (P2,E).

Remark 9. Replacing each wall in the classical scattering diagram with its quan-

tization maintains its consistency. Recall that in the Kontsevich-Soibelman consistency

lemma or Lemma 2, we compute the composition of automorphisms attached to the rays at

a singular point p, and add the uniquely determined rays so that the path ordered product

around p is the identity. In quantum scattering, the added rays will set-theoretically be

the same, and the quantized wall functions will be the same as the classical ones, except

for the appearance of powers of q in order to cancel out powers of q from the path ordered

product. However, q is in the center of the algebra, and hence the quantum path ordered

product will again be the identity.

3.3. Example: Gross-Siebert Mirror Symmetry for P2

3.3.1. Context of the Gross-Siebert program

The Gross-Siebert program seeks to understand the SYZ conjecture from the viewpoint

of algebraic geometry and tropical geometry. The SYZ conjecture formulates mirror

symmetry as the existence of pairwise dual special Lagrangian torus fibrations. In their

seminal work, Strominger, Yau, and Zaslow described this as T-duality. Let X be a
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Calabi-Yau threefold that is a special Lagrangian torus fibration over an affine manifold

B. Then the SYZ mirror X̌ of X is conjectured to be the dual torus fibration,

X X̌

B

In the case ofX or X̌, both the complex and symplectic structures give affine structures

outside of the discriminant locus ∆ ⊂ B, and they are related to each other by a Legendre

transformation. The affine structures on X and X̌ are mirror dual, in the sense that the

affine structure on X from its complex structure is the affine structure on X̌ from its

symplectic structure.

For Fano manifolds X with anticanonical divisor D, the SYZ conjecture predicts that

the mirror X̌ is the moduli space of pairs (L,∇), where L is a special Lagrangian torus

in X ∖D and ∇ is a U(1)-connection on L.

X ∖D X̌

B

In this setting, one defines a superpotential W ∶ X̌ → C as the count of Maslov Index

2, holomorphic discs with boundary on a special Lagrangian torus fibre. As one varies

the torus fibre across certain walls, the resulting count of discs is modified by additional

Maslov index 0 discs, and thus the superpotential undergoes wall crossing.

From a Fano manifold X and anticanonical divisor D, Gross and Siebert consider

a toric degeneration X → Speck[[t]], which is a degeneration of X to a singular union

of toric varieties glued along toric divisors. The intersection complex B is defined as

the singular fiber of X. It is an integral affine manifold, and one can take its Legendre

dual to obtain the dual intersection complex B̌. From B̌, they associate a consistent
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scattering diagram, which determines the mirror toric degeneration. The philosophy of

Gross-Siebert mirror symmetry may be summarized in the phrase mirror dual manifolds

admit degenerations with dual intersection complexes.

X X̌

B B̌
Legendre dual

Constructing the mirror toric degeneration X̂ from the data of B̌ is the subject of

[GS13].

3.3.2. Toric Degeneration

Let E ∈ ∣−KP2 ∣ be an anticanonical divisor given by a smooth elliptic curve. We consider

a toric degeneration X→ A1 of (P2,E) given by the following space,

X ∶= {XY Z − t(W + sf) = 0} ⊂ P(1,1,1,3) ×A2

where [X ∶ Y ∶ Z ∶ W ] are coordinates of the weighted projective plane P(1,1,1,3),

determined by the equivalence [X ∶ Y ∶ Z ∶ W ] ∼ [λX ∶ λY ∶ λZ ∶ λ3W ] for λ ∈ C∗,

and (s, t) coordinates on A2. Here f is a generic, degree 3, homogeneous polynomial in

variables [X ∶ Y ∶ Z] ∈ P2. We consider the divisor D ∶= {W = 0} ⊂ X.

When s = 0, t ≠ 0, we have the equation tW = XY Z and (X,D) is P2 with a triangle

of lines. When s ≠ 0, t ≠ 0, then (X,D) is P2 with a smooth elliptic curve. When t = 0,

then (X,D) is 3 copies of P(1,1,3) glued along toric divisors and a triangle of lines. The
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central fiber Xs=t=0 is a union of 3 P(1,1,3)’s glued along their toric boundaries, with

divisor that is a triangle of lines, and is the intersection complex associated to X. Taking

s = t, we have a degeneration of (P2,E) to the central fiber.

B B̌

(0 −1
1 2

)
(3 −1
4 −1)

(3 −4
1 −1)

T

●

●

●

●

●

●

●

●

●●

Figure 3.3. The intersection complex B of the toric degeneration X of
(P2,E) on the left. It is a singular toric variety that is the union of 3
copies of weighted projective spaces P(1,1,3)’s. We introduce affine singu-
larities x’s along the toric divisors of the P(1,1,3). Its dual B̌ is given on
the right, with central chamber T and specified monodromy.

3.3.3. Intersection complexes

The central fiber of X can be described as a Fano polytope Q, i.e. a polytope in R2 with

vertices at integer points, and a polyhedral decomposition P of B obtained by connecting

the vertices of Q to the origin. One also takes a polarization φ on Q, i.e. a strictly convex,

piecewise affine function φ ∶ Q → R defined by φ(0) = 0 and φ(v) = 1 for vertices v of Q.

We call the data (B,P, φ) the intersection complex.

The dual intersection complex (B̌, P̌ , φ̌) is obtained by taking the Legendre dual of

(B,P, φ) (see [Gro] for more details). It is an integral affine manifold, i.e. it has transition

functions inM ⋊GL(M), from the embedding B̌ ⊂ R2 and inheriting the ambient integral
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affine structure. Consider the cones C1 = (12 , 12) + (R≥0(1,0) × R≥0(0,1)), C2 = (−12 ,0) +

(R≥0(−1,−1) × R≥0(0,1)) and C3 = (0, −12 ) + (R≥0(1,0) × R≥0(−1,−1)). Then as a set,

B̌ = R2 ∖ ∪iCi.

We introduce affine singularities to B̌, which we denote by x’s. These are points

for which we specify a non-trivial monodromy of the affine structure. By introducing

monodromy, we identify,

● (12 , 12) +R≥0(1,0) with (12 , 12) +R≥0(0,1) by the SL2(Z)-transformation

⎛
⎜⎜
⎝

0 −1

1 2

⎞
⎟⎟
⎠

● (12 , 12) +R≥0(1,0) with (12 , 12) +R≥0(0,1) by the SL2(Z)-transformation

⎛
⎜⎜
⎝

0 −1

1 2

⎞
⎟⎟
⎠

● (12 , 12) +R≥0(1,0) with (12 , 12) +R≥0(0,1) by the SL2(Z)-transformation

⎛
⎜⎜
⎝

0 −1

1 2

⎞
⎟⎟
⎠

The gluing of the affine structure in B̌ makes the unbounded edges parallel to each other.

The dual intersection complex B̌ of P2 is an example of an asymptotically cylindrical affine

manifold, i.e. it has a single unbounded direction. We call the maximal two-cell that is

the triangle T of B̌ the central chamber.

We will view the dual intersection complex B̌ in a different chart in which the un-

bounded edges appear parallel by ”unfolding the polytope” (see [Gra], Definition 1 for

more detail). In this chart, B̌ is equivalently the universal cover of Ũ ∶= B̌ − T , where T

is the maximal 2-cell that is the central triangle. The dual intersection complex in this

chart appears as in Figure 3.4.
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Figure 3.4. The unfolding of B̌, with an unbounded vertical direction. The
region below the non-vertical dotted lines is excluded.

3.3.4. Scattering diagram of (P2,E)

We refer to Section 3.1 for more general details on scattering diagrams. The initial

scattering diagram D0 associated to the dual intersection complex B̌ has 6 rays, each

emanating from an affine singularity. They are given by,

(1) σ1 = (12 , 12) +R≥0(−1,1) and σ2 = (12 , 12) +R≥0(1,−1)

(2) σ3 = (−12 ,0) +R≥0(1,2) and σ4 = (−12 ,0) +R≥0(−1,−2)

(3) σ5 = (0, −12 ) +R≥0(2,1) and σ6 = (0, −12 ) +R≥0(−2,−1)

The wall functions attached to the initial rays are respectively given by,

(1) f1 = 1 + z(1,−1) and f2 = 1 + z(−1,1)

(2) f3 = 1 + z(−1,−2) and f4 = 1 + z(1,2)

(3) f5 = 1 + z(−2,−1) and f6 = 1 + z(2,1)
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The functions fi are examples of slabs, which are the walls of the initial scattering

diagram that start at affine singularities ([Gra], Definition 5.9).

When viewing D0 in Ũ , the initial rays can be characterized as the tangent lines of the

parabola y = −x22 at the integral points (n, −n2

2 ). The rays of D0 and of any of its consistent

completions never enter into the region {y < −x22 }. From D0, we inductively apply the

Kontsevich-Soibelman consistency lemma (Lemma 2) to obtain a consistent scattering

diagram S(D). If one travels sufficiently high up in Figure 3.4 (for every finite order

t-cutoff), there are unbounded chambers u of S(D). See Figure 3.5 for the scattering

diagram consistent to order t12.

3.3.5. Broken Lines

In the Gross-Siebert program, broken lines are piecewise linear maps used to probe the

combinatorial structure of the scattering diagram. Broken lines in tropical geometry are

the analogous definition of holomorphic disc counts with boundary on a moment fiber

in symplectic geometry. Cluster-type wall functions of the scattering diagram capture

instanton corrections to the disc count when moving across chambers.

Definition 34. A broken line is a piecewise linear map β ∶ (−∞,0]→ B̌ satisfying the

following conditions:

(1) There exists t0 = −∞ < t1 < . . . < tn < 0 = tn+1 corresponding to breakpoints

β(ti) ∈ Supp(D) ∖ Sing(D) where β hits a wall σi for 1 ≤ i ≤ n of the scattering

diagram. Let θi be the wall automorphism of σi. Writing b = ⋃ni=0 bi in terms

of its piecewise linear components, each line segment bi for 1 ≤ i ≤ n carries a

term cizmi ∈ C[M]⊗̂CR, where cizmi is defined inductively as a term appearing
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Figure 3.5. Scattering diagram of (P2,E) consistent to order t12, as viewed
in the unfolding of B̌ (unbounded chambers not visible). This was produced
by the Sage code of Tim Gräfnitz.
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in the wall cross θσi−1(ci−1zmi−1). For i = 0, we have c0zm0 with m0 parallel to an

unbounded direction of B̌.

(2) For 0 ≤ i ≤ n and t ∈ (ti, ti+1), mi = cβ′(t) for c ≤ 0.

The broken line ends at a point p ∈ B̌ if β(0) = p. For the monomial of β, we define

cβ ∶= cn and mβ =mn. When R = C[[t]], we say that the t−order of the broken line is the

power of t in the coefficient cβ.

By adding hats to the z’s and wall crossing in the quantum scattering diagram D̂, we

obtain the definition of a quantum broken line. We write cβ(q) instead of cβ.

● ●

Figure 3.6. Example of a broken line (blue) and a tropical completion of it
with the added walls in red.

3.3.5.1. Tropical invariants from broken lines. There is a process called tropical

completion that produces a tropical curve from a broken line, and vice versa. Roughly, by

adding the wall and its ancestors at each of the breakpoints of a broken line, one obtains
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a tropical curve. By the ancestors of a wall, we mean other walls involved in producing

the wall from application of Lemma 2. We refer to Proposition 3.2 of [Gra3] for more

details.

Recall that for P2, there is only a single unbounded direction. In Ũ , the unbounded

direction is the y-direction. For this section, let P be a general point in an unbounded

chamber u. Broken lines with endpoint p will necessarily have an ending monomial that

is parallel to the asymptotic direction ([GRZ], Proposition 3.5). Define Bp,q(P ∈ u) to

be the set of broken lines ending at P with initial monomial of the form c0yq and ending

monomial cny−p, for some c0, cn ∈ R. Let Tp,q(X,β,P ) be the set of tropical curves with

2 unbounded legs of weight p and q of an effective class β, with the image of the former

passing through P . We consider these sets in the scattering diagram Dp+q. Since there

are finitely many walls in Dp+q, each of the sets Bp,q(P ∈ u) and Tp,q(X,β,P ) is finite.

We have the following proposition,

Proposition 2 ([GRZ]). There is a finite, surjective map

µ ∶∐
β

Tp,q(X,β,P )→Bp,q(P ∈ u)

such that for each β ∈Bp,q(P ∈ u), the preimage µ−1(β) is finite and contained in a single

component Tp,q(X,β,P ), and we have the equality,

cβ(q) = ∑
h∈µ−1(b)

mh(q)

Proof. See [GRZ], Proposition 4.11 or a similar proof in [Gro], Proposition 5.32. □

Definition 35. We define,
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Rtrop
(p,q)(X,β,q) ∶= ∑

h∈Tp,q(X,β,P )
mh(q)

This is the count of two-legged tropical curves with 2 unbounded legs of weight p and q of

an effective class β.

Let Rtrop
g,(p,q)(X,β) be the quantity,

Rtrop
(p,q)(X,β,q) =∑

g≥0
Rtrop
g,(p,q)(X,β)h̵

2g

which is determined by Rtrop
(p,q)(X,β,q) after the substitution q = eih̵ into mh(q).

3.3.6. Theta functions

For this section, we assume that elements czm live in C[M]⊗̂CC[[t]]. Recall that S(D) =

D∞ is the direct limit of the Dk with Dk ⊂ Dk+1. Let B
(k)
q (P ∈ u) be the set of broken

lines with t-order k ending at P with asymptotic monomial zq.

Definition 36. For k ≥ 0 and a chamber u ∈Dk, let

θ
(k)
q (u,q) ∶= ∑

β∈B(k)q (P ∈u)
cβ(q)tdβzmβ

where dβ is the t-order of the broken line β. For a nested sequence of chambers (uk)k∈N with

uk+1 ⊂ uk, define the quantum theta function θq((uk)k∈N,q) in the asymptotic direction q

to be,

θq((uk)k∈N,q) ∶=∑
k≥0

θ
(k)
q (uk,q).
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If we take (uk)k∈N to be a nested sequence of unbounded chambers, then by Proposition

2, we may re-express θq as,

θq((uk)k∈N,q) = yq +∑
p≥1

∑
β∣β⋅D=p+q

Rtrop
g,(p,q)(X,β,q)s

βtdeg(β)y−p

For P2, the asymptotic direction m is necessarily a multiple of y, since B̌ is asymptotically

cylindrical. By letting q→ 1, we recover classical theta functions.

For a given chamber u, the functions θ
(k)
q do not depend on the choice of endpoint

P ∈ u. Consistency of the scattering diagram implies that the theta functions form globally

well-defined functions on the dual intersection complex: we have the following theorem.

Theorem 13. Let P,P ′ be two general points in Dl for some l > 0. Suppose that

(uk)k∈N and (u′k)k∈N are two nested sequences of chambers of Dl such that P ∈ uk and

P ′ ∈ u′k for all k. Let γ ⊂MR ∖ Sing(S(Dl)) be a path connecting P to P ′. Then,

θq((uk)′k∈N,q) = Φ̂γθq((uk)k∈N,q)

Proof. See [Gro], Theorem 5.35 for a proof in the classical case or [Man2] for the

q-refined setting. □

For q = 1, θ1 is the Landau-Ginzburg superpotential W . For P2, there are exactly 3

broken lines with endpoint in the central chamber, with ending monomials z(1,0), z(0,1),

and z(−1,−1). Following [CPS], the superpotential takes the form,

W = x + y + 1

xy
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●

Figure 3.7. The broken lines contributing to the Landau-Ginzburg potential
W in the central chamber of (P2,E). The ending monomials are y, yx and x

y2 ,

hence W = y+ y
x + x

y2 in the central chamber. This is equivalent to the usual

form of the Hori-Vafa potential after applying the SL2(Z)-transformation

(0 −1
1 1

).

This definition gives the Hori-Vafa superpotential, and agrees with Cho and Oh’s clas-

sification of families holomorphic discs with boundary on a moment fiber [CO]. The

superpotential W is proper when the anti-canonical divisor is smooth [CPS].

Notice that W has a quantization W (q) defined by counting mulitplicity of quantum

broken lines with endpoint in a given chamber.
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3.3.7. Algebra of Theta functions

In Gross, Hacking, and Keel, theta functions form a canonical basis of an algebra, whose

spectrum is the mirror toric degeneration of a log Calabi-Yau pair (X,D) [GHK]. Here

we define the algebra of theta functions.

We fix a sequence of chambers (uk)k∈N with P ∈ uk. The set of theta functions with

endpoint in u over all asymptotic directions forms an algebra,

A =⊕
q
C ⋅ θq((uk)k∈N,q)

with multiplication given by,

θq1((uk)k∈N,q) ⋅ θq2((uk)k∈N,q) =∑
q

αqq1q2(q)θq((uk)k∈N,q)

where the structure constants αqq1q2(q) ∶= ∑(β1,β2) cβ1(q)cβ2(q) is a sum over all pairs of

broken lines (β1, β2) with asymptotic directions q1, q2, satisfying q1 + q2 = q. It is shown in

[GRZ], Proposition 5.2 that the following equality holds in unbounded chambers,

(3.3) αqq1q2(q) = ∑
β∣β⋅D=q1+q2−q

(Rtrop
q1−q,q2(β,q) +R

trop
q2−q,q1(β,q)sβtdeg(β)

By [Gra], the structure constants αqq1q2(q) can then be expressed in terms of two-pointed

log invariants of X(logD).

These structure constants can be also be expressed in terms of punctured Gromov-

Witten invariants Nβ
q1q2q. In [Wan], a formula is proven that expresses Nβ

q1q2q as a sum of

two-pointed log invariants Rq1−q,q2 and Rq2−q,q1 of X(logD) similar to Equation 3.3.
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Remark 10. In [Gro2], it is shown that mirror symmetry for P2 is equivalent to trop-

ical formulas for descendant Gromov-Witten invariants, and certain oscillatory integrals

with tropically defined Givental J-functions.

Remark 11. In a similar vein, Gross, Hacking, and Keel implemented the Gross-

Siebert program for log Calabi-Yau surfaces X with normal crossings anti-canonical di-

visor D. The mirror family to (X,D) is spectrum of the algebra of theta functions with

multiplication defined by genus 0 log Gromov-Witten invariants with maximal tangency

to D.
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CHAPTER 4

Definition of Invariants

The purpose of this chapter is to establish the setting and define the invariants used

in the ensuing chapters. Recall that X is a log Calabi-Yau surface, which is a smooth

projective complex surface with an anticanonical divisor E ∈ ∣ −KX ∣. We assume that E

is smooth. By the adjunction formula, E is a smooth elliptic curve. Let H+2 (X,Z) be the

monoid of effective curve classes of X, and we take β ∈ H+2 (X,Z). We let π ∶ X̂ → X be

the blow up of X at a point.

For Conjectures 6, 4, 9, we will require an additional assumption that X be toric,

and we will equivalently characterize X as a toric Fano surface. Then, KX is a toric

Calabi-Yau threefold. We also take π ∶ X̂ →X to be a toric blow up. We write X(logE)

to be the log scheme X with divisorial log structure given by E. Let KX be the Calabi-

Yau threefold that is the canonical bundle of X, and Z ∶= P(KX ⊕OX) be its projective

compactification. We will take q = eih̵ as a formal variable.

4.1. Logarithmic Gromov-Witten invariants

We define two kinds of logarithmic Gromov-Witten invariants from the pair X(logE).

Let Mg,2(X(logE), β)(p,q) be the moduli space of genus g, basic stable log maps with 2

relative marked points to X(logE) in the curve class β, where the first point intersects

a fixed point of E with contact order p, and the second point intersects a varying point

of E with contact order q, such that β ⋅ E = p + q. (see Section 2.6 for more details on
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the stable log moduli space). Let ev = ev1 × ev2 ∶Mg,2(X(logE), β)(p,q) → E ×E be the

evaluation maps of the first and second relative marked points. By the Riemann-Roch

formula, the virtual dimension is given by the formula.

(dimX − 3)(1 − g) + ∫
β
c1(TX) + 2 − β ⋅E

and hence is g + 1.

We define the invariant Rg,(p,q)(X(logE), β) by inserting a λg-class and fixing a point

[pt] ∈H2(E),

(4.1) Rg,(p,q)(X(logE), β) ∶= ∫
[Mg,2(X(logE),β)(p,q)]vir

(−1)gλgev∗1 [pt]

Now, letMg,1(X(logE), β) be the moduli space of genus g, basic stable log maps to

X(logE) in the curve class β with 1 relative marked point of maximal tangency of order

β ⋅E. Its virtual dimension is g. We define the invariant,

(4.2) Rg,(β⋅E)(X(logE), β) ∶= ∫
[Mg,1(X(logE),β)]vir

(−1)gλg

We will sometimes suppress the log structure and curve class for these invariants and

write Rg,(p,q)(X(logE), β) and Rg,(β⋅E)(X(logE), β)) as Rg,(p,q)(X) and Rg,(β⋅E)(X), re-

spectively.
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4.2. Local Gromov-Witten invariants

We review the definition of local Gromov-Witten invariants. A genus g stable map

f ∶ C → KX in curve class β is the same data as a map f ∶ C → X in class β and a

section s ∶ C → f∗KX . Since E is ample and in particular nef, we have E ⋅ β > 0 and

hence f∗KX = f∗O(−E) is a negative line bundle over C. Therefore, genus g stable maps

f ∶ C → KX must factor through the zero-section X. Let Mg(X,β) be the moduli space

of genus g, unmarked stable maps to X in class β. We have the equality of moduli spaces

Mg(KX , β) = Mg(X,β) by the reasoning above, however their respective obstruction

theories will differ. Let π ∶ U →Mg(X,β) be the universal curve, and ev ∶ U → X be the

universal map. The genus g local Gromov-Witten invariant of X is defined as,

(4.3) Ng(KX , β) ∶= ∫
[Mg(X,β)]vir

e(R1π∗ev
∗KX)

From comparing the obstruction theories of the surface and the threefold, this invariant

is equal to,

∫
[Mg(KX ,β)]vir

1

These invariants were first introduced in [CKYZ] and considered in higher genus [KZ].

4.2.1. The (closed) Gopakumar-Vafa formula

For a Calabi-Yau threefold Y , Gopakumar and Vafa conjectured that the Gromov-Witten

invariants Ng(Y,β) in curve class β can be re-expressed by integer counts of BPS states
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supported on holomorphic curves [GV1], [GV2]. Their re-summation formula takes into

account multiple cover contributions to Ng(Y,β), and is the following,

(4.4) ∑
g≥0
Ng(Y,β)h̵2g−2 = ∑

β=kβ′
∑
g≥0
ng(Y,β′)

1

k
(2 sin kh̵

2
)
2g−2

We call the ng(Y,β) Gopakumar-Vafa invariants or closed BPS invariants, and are defined

by Equation 4.4.

The Ng(Y,β) are determined uniquely by the ng(Y,β) and vice versa, by Möbius

inversion. The ng(Y,β′) are conjectured to be integers and satisfy the vanishing properties

ng(Y,β′) = 0 for g >> 0. When Y is compact, the conjecture was initially proven by Ionel

and Parker [IP18] using symplectic methods. When Y is a toric Calabi-Yau, it was proven

by Peng [P] and Konishi [Kon] using methods from the topological vertex.

4.3. Open Gromov-Witten invariants

Open Gromov-Witten invariants are virtual counts of genus g Riemann surfaces with

h holes ending on specified Lagrangian submanifolds in a toric Calabi-Yau threefold.

Defining a virtual class on the moduli of bordered Riemann surfaces is a difficult question,

due to the presence of bubbling along the real co-dimension 1 boundary and non-compact

target geometries. Despite this, there have been a litany of results related to open string

invariatns. Graber and Zaslow matched physical predictions in the work of Aganagic and

Vafa by assuming the moduli space of Riemann surfaces with boundary has a virtual class

which satisfies a localization theorem [GZ]. Katz and Liu constructed well-defined open

invariants from the moduli of J-holomorphic discs when the boundary Lagrangian carries



99

a U(1)-action [KL]. Solomon and Tukachinsky defined open invariants from the Fukaya

A∞-algebra of the Lagrangian [ST] and showed they satisfied the Gromov-Witten axioms.

In informal terms, we describe briefly the approach of [LLLZ] of defining open in-

variants via stable relative maps, in order to state the multiple cover formula for open

invariants. We refer to [LLLZ], or Section 6 of [BBvG] for more details.

Let Y be a Calabi-Yau threefold, and L = L1 ⊔ . . . ⊔ Ls ⊂ Y a disjoint union of s

Lagrangians Li. We consider specific Lagrangians known as Aganagic-Vafa (AV) branes.

These Lagrangians are isomorphic to S1 ×C, and were first considered in [AV], whereby

they relate disc counting in a Calabi-Yau threefold with the classical Abel-Jacobi map on

the mirror curve. AV-branes can be categorized as inner or outer (see [FL], Section 2.4).

The idea of [LLLZ] is to replace the geometry (Y,L) with a partially compactified

geometry (Ŷ , D̂ = D̂1 + . . . + D̂s) with KŶ + D̂ = 0. They consider the moduli space

Mg,Ð→µ (Ŷ /D̂, β) of stable relative maps to (Ŷ , D̂). For these maps, a winding profile

Ð→µ = (µ1, . . . , µs) is specified, which is a set of finite sequences (µi)i of non-negative integers

representing the contact orders of the stable relative maps with each D̂i. Let ∣µi∣ be the

number of non-zero integers in µi, and ∣Ð→µ ∣ ∶= ∑i ∣µi∣.We can write µi = (µi1, . . . µi∣µi∣) ∈ Z
∣µi∣
>0 .

The contact orders µi of a stable relative map are analogous to boundary winding data

S1 ↪ L of open Riemann surfaces ending on L. A choice of framing
Ð→
f = (f1, . . . , fs) ∈ Zs≥0

is made for each D̂i (see Section 3.2 [AKMV], for a discussion). The moduli space

Mg,Ð→µ (Ŷ /D̂, β) is not proper, and hence does not carry a virtual fundamental class.

However, it inherits a T ′ ≅ (C∗)2 action from X̂ with compact fixed loci. The virtual

class [Mg,Ð→µ (Ŷ /D̂, β)]vir,T
′

is defined by T ′-virtual localization. Thus, the genus g, open



100

Gromov-Witten invariants OY,L,f

g,β,Ð→µ of (Y,L) in class β and framing
Ð→
f , with winding profile

Ð→µ , are defined by,

(4.5) OY,L,f

g,β,Ð→µ ∶= ∫[Mg,Ð→µ (Ŷ /D̂,β)]vir,T
′

eT (B1,m)
eT (B2,m)

where eT denotes the T -equivariant Euler class, and B1,m are the moving parts of the

obstruction theory.

In [FL], they prove a conjecture of Aganagic-Vafa related to disc counting and super-

potentials with the above definition of open invariants. In particular, they recover the

results of [GZ]. These open invariants also agree with those defined in [KL].

4.3.1. The (open) Gopakumar-Vafa formula

From the work of [MV], open Gromov-Witten invariants OY,L,f

g,β,Ð→µ are conjectured to satisfy

a re-summation formula in terms of open BPS invariants nY,L,f
g,β,Ð→µ . Given a finite sequence

of non-negative integers µi, define the quantity,

zµi ∶= ∣Aut(µi)∣
∣µi∣
∏
m=1

µij

For a given curve class β ∈ H2(Y,L,Z), the multiple cover formula for open invariants

([MV], Equation 2.10) states that,
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∑
g≥0
OY,L,f

g,β,Ð→µ h̵
2g−2+∣Ð→µ ∣ = 1

∏s
i=1 zµi

∑
k∣β
∑
g≥0
(−1)∣Ð→µ ∣+gk∣Ð→µ ∣−1nY,L,f

g,β
k
,Ð→µ
(2 sin kh̵

2
)
2g−2 s

∏
i=1

∣µi∣
∏
j=1

2 sin
µijh̵

2

(4.6)

In forthcoming chapters, we will specifically take s = 1 and consider OKX ,L,0
g,β,(1) , or the

genus g, open invariant of a single, outer AV-brane L in a toric canonical bundle KX , in

class β, with winding 1 and framing 0. Hence, we define,

(4.7) Og(KX , β,1) ∶= OKX ,L,0
g,β,(1)

We will consider the corresponding open BPS invariant nKX ,L,0
g,β,(1) , and we define,

(4.8) nopeng (KX , β,1) ∶= nKX ,L,0
g,β,(1)

Remark 12. In writing Og(KX) in the subsequent chapters, we will write the curve

class as β + β0, with β ∈ H2(KX ,Z) and β0 ∈ H2(KX , L,Z). Hence, Og(KX , β + β0,1) ∶=

OKX ,L,0
g,β+β0,(1) and similarly for nopeng .
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CHAPTER 5

Higher genus local Gromov-Witten invariants from projective

bundles

In this chapter, we present a new way to obtain certain Gromov-Witten invariants of

toric Calabi-Yau threefolds using projective bundles. Our method differs from previous

work by using logarithmic Gromov-Witten theory of log Calabi-Yau surfaces with λg-

insertions. As a corollary, we prove a blow up formula for invariants of projective bundles.

In addition, we conjecture open-closed correspondences in all genus, with proof in low

degrees and all genus.

5.1. Introduction

Recall that X is a log Calabi-Yau surface with a smooth anti-canonical divisor E that

is an elliptic curve. Define Z ∶= P(KX ⊕OX) be the 3-dimensional, projective compactifi-

cation of the canonical bundle KX . The effective curve classes H+2 (Z) decompose into a

sum of effective classes in the base and fiber,

H+2 (Z) = i∗H+2 (X)⊕H+2 (P1)

where i ∶ X ↪ Z is the inclusion of X as the zero-section of Z, and P1 is a fiber of Z.

Let β + h ∈H+2 (Z,Z) be a curve class with β ∈H+2 (X), and h is the generator of H+2 (P1).
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Consider the moduli space of genus g, 1-pointed maps Mg,1(Z,β + h) to the projective

bundle Z in the curve class β + h. Its virtual dimension is,

(dimZ − 3)(1 − g) + ∫
β+h

c1(TZ) + 1

Since c1(TZ)(β) = 0 and dimZ = 3, the moduli space has virtual dimension 3. Hence, we

define the closed Gromov-Witten invariant,

Ng,1(Z,β + h) ∶= ∫
[Mg,1(Z,β+h)]vir

ev∗[pt]

where [pt] ∈ H6(Z,Z) is the Poincaré dual of a point. This quantity is the virtual count

of genus g closed curves in Z passing through a single point in a fiber. In our notation,

we will often suppress the curve class and write Ng,1(Z,β + h) as Ng,1 or Ng,1(Z).

The invariant N0,1(Z,β+h) first appeared in [Cha], where it is equated with the genus

0, winding 1, open Gromov-Witten invariant of KX with boundary on a torus fiber. More

recently, N0,1(Z,β +h) was computed in [Wan] and shown to equal genus 0, two-pointed,

logarithmic Gromov-Witten invariants of X(logE), up to a constant factor. The latter

invariants appear in Gross-Siebert mirror symmetry where they express the structure

constants of the intrinsic mirror ring of theta functions [GS16]

In this chapter, we use the degeneration formula for stable log maps [KLR] to es-

tablish a formula relating Ng,1(Z,β + h) to higher genus, logarithmic Gromov-Witten

invariants of X(logE) with λg-insertions for all g ≥ 0. We explain how arguments used

in [vGGR], [Wan] can be extended to higher genus as dimX = 2. We then apply the
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higher genus log-local principle [BFGW] to obtain Gromov-Witten invariants of toric

Calabi-Yau threefolds.

We refer to Chapter 4 for the definition of relevant invariants. Recall that π ∶ X̂ →X

is the blow up of X at a point with exceptional curve C, and KX̂ its canonical bundle.

In Section 5.3, we prove our main theorem,

Theorem 14 (Theorem 1). There exists constants c(g, β) ∈ Q such that,

∑
β∈H+2 (X,Z)

∑
g≥0
Ng,1(Z,β+h)h̵2gQβ = ∑

β∈H+2 (X,Z)
∑
g≥0

⎡⎢⎢⎢⎢⎣
c(g, β)ng (KX̂ , π

∗β −C)( ih̵

q
1
2 − q−12

)
2g−2

Qβ

⎤⎥⎥⎥⎥⎦
−∆pl

where q = eih̵, and ng(KX̂ , π
∗β −C) is the genus g, Gopakumar-Vafa invariant of KX̂ in

curve class π∗β − C. The discrepancy term ∆pl is a function of the stationary Gromov-

Witten theory of the elliptic curve and two-pointed log invariants of X(logE) defined in

Equation 5.8.

The stationary theory of the elliptic curve was solved by [OP] and exhibits quasi-

modularity. The two-pointed log invariants of X(logE) can be computed by broken line

counting or quantum wall crossing (see Chapter 3 for more details).

In addition to Theorem 14, we will prove a blow up formula for the invariantsNg,1(Z,β+

h) using flops in Section 5.4,

Theorem 15 (Theorem 2). Let c(g, β) ∈ Q and ∆pl be as in Theorem 14, and let

W = BlpZ be the blow up of Z at a point p on the infinity section of Z. Then, we have

that,
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∑
β∈H+2 (X,Z)

∑
g≥0
Ng,1(Z,β + h)h̵2gQβ = ∑

β∈H+2 (X,Z)
∑
g≥0
[c(g, β)Ng,0(W,β + L̃)h̵2gQβ] −∆pl

In Section 5.5, we will use Theorem 14 to conjecture an all genus correspondence

between open Gromov-Witten invariants of KX and the closed invariants Ng,1(Z),

Conjecture 4 (Conjecture 2). Let c(g, β) ∈ Q and ∆pl be as in Theorem 14. Fur-

thermore, assume that X is toric, and π ∶ X̂ → X is a toric blow up. Define d(g, β) ∶=

(−1)g+1c(g, β). We conjecture the following equality,

∑
β∈H+2 (X,Z)

∑
g≥0
Ng,1(Z,β+h)h̵2gQβ = ∑

β∈H+2 (X,Z)
∑
g≥0

⎡⎢⎢⎢⎢⎣
d(g, β)nopeng (KX , β + β0,1)(

ih̵

q
1
2 − q−12

)
2g−2

Qβ

⎤⎥⎥⎥⎥⎦
−∆pl

where nopeng (KX , β + β0,1) is the genus g, 1-holed, winding 1, open BPS invariant in

curve class β + β0 of an outer Aganagic-Vafa brane L in framing 0 (see Chapter 4 for its

definition).

Hence, open invariants of KX can conjecturally be expressed in terms of closed in-

variants Ng,1(Z,β + h), the stationary Gromov-Witten theory of the elliptic curve, and

two-pointed log invariants of X(logE).

From computations in the topological vertex in Chapter 7, we prove Conjecture 4 in

low degrees and all genus for X = P2,

Theorem 16 (Theorem 5). Let X = P2 and H ∈H2(P2,Z) the hyperplane class. Then

Conjecture 4 holds in curve classes β = dH for d = 1,2,3,4 and all genus.
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We also give explicit genus 1 formulas for Theorems 14, 15, and 16 in Corollaries 1, 2,

Corollary 3, and Conjecture 5, respectively.

5.1.1. Related work in GW-theory of projective bundles

Projective bundles are of particular interest in Gromov-Witten theory, since they appear

as ”bubble components” in Jun Li’s theory of expanded degenerations. The main issue in

relative Gromov-Witten theory is that a limit of relative stable maps intersecting properly

a divisor D may not intersect properly in the limit. Bubble components or projectivized

normal bundles are introduced so that the limit stable map has proper intersection with

D.

The Gromov-Witten theory of projective bundles has been studied in [Fan], where

he showed that if two vector spaces V1 and V2 have the same Chern classes, then the

Gromov-Witten theory of their projectivizations P(Vi) are equal. Projective bundles are

toric, as they admit a natural C∗-action that scales the fiber. Coates showed that the

Virasoro constraints are satisfied for toric bundles if and only if they are satisfied for the

base.

Maulik and Pandharipande study the absolute Gromov-Witten theory of hypersurfaces

by deforming to the normal cone [MP]. The absolute and relative Gromov-Witten theory

of projective bundles naturally appears, where invariants relative to the 0- or∞-section are

considered. They use localization to compute the absolute theory of projective bundles.

There is a natural C∗-action that scales the fiber. Its fixed locus are maps going into the

0- or ∞-section, both of which are isomorphic to X. Therefore, the virtual localization

formula reduces the Gromov-Witten theory of Z to Hodge integrals on X.
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In our work, we instead use the degeneration formula for stable log maps [KLR] to

compute the absolute invariants Ng,1(Z,β+h) by relating them to two-pointed logarithmic

Gromov-Witten invariants of X(logE) with λg-insertions.

5.2. Degeneration of projective bundles

5.2.1. The degeneration

We take a degeneration of Z to a normal crossings singular fiber to compute the invariants

Ng,1. Let X = BlE×0(X×A1) be the deformation to the normal cone π ∶X → A1. The fiber

X −1(t) when t ≠ 0 is isomorphic to X. The special or singular fiber X −1(0) is isomorphic

to BlEX ⊔P(NE/X)P(NE/X⊕OE), as the exceptional hypersurface is the projectivization of

NE×0(X ×A1) ≅ NE/X ⊕OE. As P(NE/X) ≅ E, the blow up along the divisor E does not

change X. Hence, the special fiber is X ⊔E P(NE/X⊕OE). Denote Y to be the exceptional

hypersurface P(NE/X ⊕ OE). The two pieces are glued along the 0-section of Y , which

corresponds to the summand NE/X . Let πY ∶ Y → E be the projection map.

Let E0 and E∞ be the sections of Y corresponding to the summands NE/X and OE

respectively. Let E ∶= π−1(E ×A1 ∖E × 0) be the strict transform of E × A1. Define

the space L = P(OX (−E ) ⊕ OX ) on X , which will serve as a degeneration L → A1

of Z. The generic fiber Lt when t ≠ 0 is isomorphic to Z, and the special fiber L0 is

isomorphic to X × P1 ⊔E×P1 P(OY (−E∞) ⊕ OY ). We denote LX = X × P1,LE = E × P1

and LY = P(OY (−E∞)⊕OY ), hence L0 = LX ⊔LE
LY . There are natural projection maps

πL ∶ L → A1 and πLY
∶ LY → Y. The restriction of LY onto a fiber of Y → E is the first

Hirzebruch surface F1 = P(OP1(−1)⊕OP1). See Figure 5.1.
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Z

X
E

X
E

E
X

Z

Y = P(NE/X ⊕OX)

LX ⊔LE
LY

L

X

A1

0t ≠ 0

E

F1

Figure 5.1. The degeneration L → X → A1 of the projective bundle Z =
P(KX ⊕ OX) to the central fiber L0 = LX ⊔LE

LY . The space L is the
projective bundle corresponding to the divisor E (shaded in red) of the
deformation the normal cone X → A1. When restricting LY over a fiber of
Y → E, one obtains the first Hirzebruch surface F1(shaded in blue).

5.2.2. Stable log maps to L

We consider stable log maps to the degeneration L of Z. We take the divisorial log

structure on L given by the central fiber L0. LetMg,n+r(L(logL0), β + h) be the moduli

space of genus g, basic stable log maps to L in the curve class β+h, with n interior marked

points and r relative marked points.

We explain the notation of the curve class β+h inM(L, β+h). Recall that β ∈H+2 (X)

and h ∈H+2 (P1) is the class of a P1-fiber. The class β +h strictly lives in H∗(Lt) ≅H∗(Z)

for t ≠ 0. When writing β + h as a curve class in L, we refer to a global lifting of β + h to
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a class α ∈H∗(L) such that α∣Lt = β +h for all t ≠ 0. On the central fiber L0 = LX ⊔LE
LY ,

if we decompose α∣L0 = βX + βY with βX ∈ H∗(LX), βY ∈ H∗(LY ), then α∣L0 must satisfy

(πLX
)∗βX + (πY )∗βY = β + h, where πLX

∶ LX →X is the projection map and πY ∶ Y → E.

On curve classes βY in LY , the map πY contracts fibers of Y → E. Hence, for simplicity

we write maps to L in class α as maps in class β + h.

Stable log maps to the generic fiber Lt will not intersect the central fiber, and hence

the log structure of those stable maps is trivial. After forgetting the log structure, the

stable log moduli space to Lt is isomorphic to the ordinary moduli space of stable maps,

M(Lt(logLE), β + h) ≅ M(Z,β + h). We also take the divisorial log structure on A1

with respect to {0}. As L → A1 is a normal crossings degeneration, it is log smooth. By

[GS13], the moduli spaceM(L/A1, β + h) is proper.

We have the following lemma (adapted from [vGGR], Lemma 2.2) which relates the

virtual class ofM(Lt) to the virtual class ofM(L0).

Lemma 4. Let P0 ∶ M(L0(log LE), β + h) → M(X,β) be the map that forgets the

log structure, composes with the natural maps L0 → X0 → X, and stabilizes, and Pt ∶

M(Z,β + h) → M(X,β) be the map that composes with the projection Z → X, and

stabilizes. Let P ∶M(L(log L0), β + h) →M(X ×A1/A1, β) be the map of moduli spaces

that restricts to Pt or P0 on each fiber. Let M(X × A1/A1, β) be the space of ordinary

stable maps to X ×A1 in curve class β.

When t ≠ 0, we have the following equality of virtual cycles,

(P0)∗[M(L0(logLE), β + h)]vir = (Pt)∗[M(Z,β + h)]vir
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Proof. We have the following commutative diagram,

M(L0(logLE), β + h) M(L(log L0), β + h) M(Z,β + h)

M(X,β) M(X ×A1, β) M(X,β)

{0} A1 {t}

P0 P Pt

f

i0 it

We have the following equalities,

(P0)∗[M(L0)]vir = (P0)∗i!0[M(L/A1]vir

= i!0P∗[M(L/A1]vir

= i!tP∗[M(L/A1]vir

= (Pt)∗i!t[M(L/A1]vir

= (Pt)∗[M(Z,β + h)]vir

The 1st and 5th equalities follow from [M(L0)]vir = i!0[M(L/A1)]vir and [M(Z)]vir =

i!t[M(L/A1)]vir, which follow from the compatibility of virtual classes with base change.

The 2nd and 4th equalities follow from commutativity of Gysin pullback with proper

pushforward applied to the top left and right squares. The 3rd equality follows because

f is the trivial family. □

5.2.3. The degeneration formula

The degeneration formula for relative Gromov-Witten invariants first appeared in work of

[Li],[IP]. For stable log maps, [KLR] proved a degeneration formula when the singular
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fiber consists of two irreducible components. In [ACGS], a degeneration formula is proven

for more general singular fibers using the technology of rigid tropical maps.

It is known that logarithmic Gromov-Witten invariants are constant in log smooth

families (see Appendix A of [MR]): suppose that G → B is a log smooth, degenerating

family, and let ib ∶ Gb ↪ G be the inclusion of the fiber over b ∈ B into G. Then, the

invariance of logarithmic Gromov-Witten invariants is the statement that,

[M(Gb)]vir = i!b[M(G)]vir

As a consequence, logarithmic Gromov-Witten invariants of the generic fiber are equal to

logarithmic Gromov-Witten invariants of the singular fiber.

The degeneration formula of [KLR] splits the virtual class of maps to the singular

fiber into virtual classes of maps to each of its irreducible components. Let M(L0) ∶=

Mg,n(L0(logLE), β + h) be the moduli space of genus g, n-marked, stable log maps to

L0(logLE) of curve class β+h. Stable maps to the singular fiber are encoded by bipartite

graphs Γ. Denote the vertices as V (Γ) and edges as E(Γ). We assign to each vertex

V ∈ V (Γ) a non-negative integer gV ≥ 0, a curve class βV ∈ H2(LV ), and a subset of

markings nV ⊂ {1,2, . . . , n}. We assign to each edge e ∈ E(Γ) a non-negative integer

weight we ≥ 0. Edges connecting any two vertices represent relative contact orders, and

no two vertices on the same side are connected by an edge. There are the following

conditions on Γ can be found in Section 2 of [KLR],
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i∗βX + p∗βy = β + h

1 − χtop(Γ) +∑
V

gV = g

⋃
V

nV = {1,2, . . . , n}

∑
e

we = β ⋅D

We denote Γ(g, n, β) to be the set of all such bipartite graphs Γ satisfying the above

conditions.

Vertices on one side of Γ encode moduli of stable log maps to LX and vertices on the

other side encode moduli of stable log maps to LY . For each vertex V , let rV be the

number of edges it has. Define an index i(V ) to be X or Y depending on which side

V lives in. Define MV ∶=MgV ,nV +rV (Li(V )(logLE), βV ) to be the moduli space of genus

gV basic stable log maps to Li(V )(logLE) with nV interior marked points and rV relative

marked points in class βV . It has two natural evaluation maps of the interior or relative

marked points. Let ev1 ∶ MV → LnV

i(V ) and ev2 ∶ MV → LrVD be the evaluation map of

interior and relative marked points, respectively. We say that a vertex V is an X-vertex

or Y -vertex if maps inMV map to LX or LY , respectively.

We have the following commutative diagram,

⊙VMV ∏VMV

∏eE ∏V ∏V ∈eE ×E
ev

∆
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which defines the space ⊙VMV as the fiber product. A stable map in ⊙VMV satisfies

the predeformability condition (see Section 2.2 of [GV]); if two vertices V1 and V2 of Γ

are joined by edge e, then maps inMV1 andMV2 will intersect at the same point in the

divisor LE with contact orders we.

LetMΓ be the space of stable maps whose dual intersection graph collapses to Γ with

a subset of its nodes corresponding to edges e1, . . . , er.We have an étale map that partially

forgets the log structure Φ ∶MΓ → ⊙VMV with degΦ = ∏ewe

lcm{we} (Equation 1.4 of [KLR]).

We also have a finite map F ∶MΓ →M(L0) that forgets the graph marking of the stable

map.

The degeneration formula sums over all possible bipartite graphs Γ ∈ Γ(g, n, β) to

obtain the virtual class of the central fiber L0.

Theorem 17 ([KLR]). We have the equality of virtual classes,

[M(L0)]vir = ∑
Γ∈Γ(g,n,β)

lcm{we}
∣Aut(Γ)∣F∗Φ

∗∆!∏
V

[MV ]vir

We apply the above theorem to compute the invariants Ng,1(Z,β+h) of the projective

bundle.

5.2.4. Bipartite graphs in the degeneration

In genus 0, the analysis for the bipartite graphs Γ that can appear is done in [Wan]. In

order to extend to higher genus, we describe how to generalize the necessary lemmas from

[vGGR]. We remark that they can be extended when dimX = 2.
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Theorem 18. Let g ≥ 0. The bipartite graphs Γ that have nonzero contribution in the

degeneration are,

V1

V3

V2

1

β

(β ⋅E − 1)B

B + F

β ⋅E − 1

Let B denote the fiber class of πY ∶ Y → E, and F denote the fiber class of πLY
∶ LY → Y.

The curve class β ∈H2(X,Z) is attached to vertex V1, the class (β ⋅E −1)B is attached to

vertex V2, and the class we1B + F is attached to vertex V3. The edge connecting vertices

V1 and V3 has weight we1 = 1, and the edge connecting vertices V1 and V2 has weight

we2 = e − 1. We have g = gV1 + gV2 + gV3 .

5.2.4.1. Condition on the X-vertices. In this section, we show that any X-vertex of

Γ has at most two edges (see Section 5.2.3 for definition of X-vertex).

Lemma 5. Let Γ be a graph with an X-vertex V with r > 2 adjacent edges, then

[MΓ]vir = 0.

Proof. Since non-surjective maps from a proper, genus g (nodal) curve to P1 are

constant, the evaluation map MV → (E × P1)rV factors through ErV × P1, where P1 is

embedded diagonally. In addition, we separate out MV from ∏V ′≠VMV ′ . We have the

following commutative diagram.
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MV ×Lr
E
⊙V ′≠VMV ′ MV ×∏V ′≠VMV ′

(Er × P1) × (E × P1)s (Er × P1)2 × (E × P1)2s

(E × P1)r × (E × P1)s (E × P1)2r × (E × P1)2s

ev ev

∆′

δ∶=(id×diag)×id δ′∶=(id×diag)×id

∆

Let N,N ′ be the normal bundles of ∆,∆′, respectively. Define A ∶= δ∗N/N ′, with

rank r − 1. The excess intersection formula ([Ful], Theorem 6.3) tells us that,

∆!α = cr−1(ev∗A) ∩ (∆′)!α

for α ∈ A∗(MV ×∏V ′≠VMV ′).

The normal bundle M of δ is T (P1)r−1 = OP1(2)r−1, and the normal bundle M ′ of δ′ is

isomorphic to OP1(2)2r−2. By the Cartesian property of the bottom square, we have that

A ≅ (∆′)∗M ′/M ≅ OP1(2)r−1. We see that cr−1(A) = 0 if r > 2. Applying this to the class

[MV ]vir ×∏V ′≠V [MV ′]vir, we have the desired result. □

5.2.4.2. Conditions on the Y-vertices. Let V be a Y -vertex. Recall that we have

the projections πLY
∶ LY → Y and πY ∶ Y → E. Note that the evaluation map ev2 ∶

M(LY (logLE), βV )→ (E × P1)rV can be decomposed as,

M(LY (logLE), βV )
πLYÐÐ→M(Y (logE0), (πLY

)∗βV )
pÐ→M(E, (πY ○πLY

)∗βV )
evÐ→ E×0↪ (E×P1)rV

The map p forgets the log structure, composes with πY , and stabilizes. Since E∞ is

nef, we have −E∞ ⋅ (πLY
)∗βV < 0, and therefore have the equality of moduli spaces
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M(Y (logE0), (πLY
)∗βV ) = M(LY (logLE), (πLY

)∗βV ). We first show that (πLY
)∗βV

must be a multiple of a fiber class of Y → E.

Lemma 6. If the curve class (πLY
)∗βV is not a multiple of a fiber class of Y → E,

then (ev2)∗[MV ]vir = 0.

Proof. It suffices to generalize Proposition 5.3 of [vGGR] to higher genus. We have

the following commutative diagram,

M(Y (logE0), (πLY
)∗βV ) M M(E, (πY ○ πLY

)∗βV )

Mlog
g,n,H2(Y )+ Mlog

g,n,H2(Y )+ Mg,n,H2(E)+

u v

id ν

The space Mlog
g,n,H2(Y )+ was introduced in [Cos03], and is the stack of genus g, n-marked,

pre-stable log curves that additionally remembers the curve class of each irreducible com-

ponent. Its usefulness lies in the fact that we have an isomorphism of obstruction theories

E●
M(Y,β)/Mlog

g,n,H2(Y )
+

≅ E●M(Y,β)/Mg,n
, since the forgetful map Mlog

g,n,H2(Y )+ → Mg,n is étale.

The space M is defined to make the right hand square Cartesian, and its obstruction

theory is defined as the pullback obstruction theory by ν. By the results in [Man08], we

have,

ν ![Mg,n(E,p∗β)]vir = [M ]vir

The above diagram is used to prove the following theorem,

Theorem 19 ([vGGR]). Let πY ∶ Y → E be a log smooth morphism where E has

trivial log structure. Suppose that for every log smooth morphism f ∶ C → Y of genus g

and class β we have H1(C,f∗TY log) = 0, then
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Mg,n(Y (logE0), (πLY
)∗βV ) = u∗ν ![Mg,n(E, (πY ○ πLY

)∗β)]vir

provided that [Mg,n(E, (πY ○πLY
)∗βV )]vir ≠ 0. In particular, if [Mg,n(E, (πY ○πLY

)∗βV )]vir

can be represented by a cycle supported on some locus W ⊂ Mg,n(E, (πY ○ πLY
)∗βV ),

then [Mg,n(Y (logE0), βV )]vir can be represented by a cycle supported on w−1(W ) where

w = v ○ u.

The convexity assumption in Theorem 19 on Mg,n(Y (logE0)) guarantees that u is

smooth. This implies that the virtual pullback u! defined by [Man08] agrees with smooth

pullback u∗. For our purposes, we relax the convexity assumption in Theorem 19, which

only holds in g = 0,1. This has the effect of making u potentially non-smooth, however

the virtual pullback u! is still defined. We have the short exact sequence,

0→ T (Y (logE0)/E0)log → T (Y (logE0))log → TE0 → 0

where T (Y (logE0)/E0)log is the logarithmic tangent bundle of Y (logE0) relative to E0.

It induces a compatible triple for the left hand square of the above commutative diagram.

Thus, applying [Man08], Corollary 4.9, the virtual classes are now related by,

[Mg,n(Y (logE0), (πLY
)∗βV )]vir = u!ν ![Mg,n(E, (πY ○ πLY

)∗β)]vir

In particular, if [M(E,πY ∗β)]vir is a cycle supported on some locusW , then [M(Z,β)]vir

is a cycle supported on v−1u−1(W ). This latter detail allows Lemma 6 and conse-

quently Proposition 5.3 of [vGGR] to be generalized to higher genus, which implies
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p∗[M(Y (logE0), (πLY
)∗βV )]vir = 0. This gives the desired vanishing, and we have the

proof of Lemma 6. □

Next, we show that a Y -vertex V cannot have more than a single edge, i.e. rV ≤ 1.

(see Section 5.2.3 for definition of rV )

Lemma 7. Suppose that the curve class of a Y -vertex V is 1) a multiple of the fiber

B of Y → E, or 2) B + F , where F is a fiber of LY → Y . Suppose rV > 1. In case 1), we

have (ev2)∗[MV ]vir = 0. In case 2), let [pt] ∈ A2(F1) be the Poincare dual of a point in

F1 ↪ LY , then (ev2)∗([pt] ∩ [MV ]vir) = 0.

Proof. When the curve class is B + F , recall that we have nV = 1. The virtual di-

mension of Mg,1+rVM(LY (logLE),B + F ) is 3 + rV . The relative evaluation map factors

throughMg,1+rV (LY (logLE),B +F )
ftÐ→Mg,rV (LY (logLE),B +F )→ E × 0↪ (E ×P1)rV .

The first map forgets the interior marked point and stabilizes. Note that stabilization

will not change the incidence of the relative marked points. We consider the cycle

[pt] ∩Mg,rV (LY (logLE),B + F ) with [pt] ∈ A2(F1), in order to consider the locus of

maps that pass through an interior point constraint. The resulting locus is an rV -cycle.

We show that (ev2)∗([pt] ∩Mg,rV (LY (logLE),B + F )) = 0. Since ev2 factors through

E × 0 ↪ (E × P1)rV , it suffices to see that rV > dimE. But dimE = 1 and rV > 1 by

assumption. Thus, we have the desired vanishing.

When the curve class isB, we have nV = 0. The virtual dimension ofMg,rV (LY (logLE),B)

is rV . Similarly, the evaluation map factors through E × 0 ↪ (E × P1)rV , and we have

rV > dimE, since we assume rV > 1. □
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Finally, we see that Proposition 4.8 of [Wan], which shows that the edge weights of Γ

must be we1 = 1 and we2 = e−1, generalizes to higher genus. In particular, it disallows the

possibility of a graph consisting of a single Y -vertex V with βV = eB +F : if we1 ≥ 2, then

the class βV must contain a fiber of Y → E. As a result, the evaluation map MV → LE

is constant and factors through E × 0. Thus, when dimE = 1, we have (ev2)∗[MV ]vir = 0,

since virdimMV > dimE for all g ≥ 0.

Proof of Theorem 18. When dimX = 2, Lemmas 5, 6, 7 show that Theorem 18

is true for all g ≥ 0. □

Remark 13. In [Wan], moduli spaces with built-in point constraints are considered,

and the decomposition formula of [ACGS] is used to handle the point constraint defining

Ng,1(Z,β + h) by decomposing [M(L0)]vir into a sum over rigid tropical maps mapping

into the tropicalization of L0. We do not point-constrain our moduli spaces; instead we

impose the appropriate incidence conditions when evaluating the invariants arising in the

degeneration.

5.2.5. Evaluation of the invariants associated to Γ

The degeneration formula applied to the graphs Γ in Theorem 18 gives us,

[M(L0)]vir = ∑
gA+gB+gC=g

(e − 1)F∗Φ∗∆!([MgA,2(LX(logLE), β)]vir×

[MgB ,1(LY (logLE), (e − 1)B)]vir × [MgC ,2(LY (logLE),B + F )]vir)
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β

(β ⋅E − 1)B

B + F

LX
LE

LY

Figure 5.2. The curve classes for the degeneration formula in the central
fiber L0 that is the union of two spaces LX and LY intersecting transversely
along LE. These curves are represented by the graph in Theorem 18.

(see Section 5.2.3 for definition of F,Φ, and ∆). The curve invariants on the right hand

side are shown in Figure 5.2. We evaluate the right hand side by evaluating the degree of

each virtual class appearing in the product.

Let B be a fiber of Y → E and F be a fiber of LY → Y . The restriction of LY over B

is the first Hirzebruch surface F1 = P(OP1(−1) ⊕OP1), since B ⋅ (−E∞) = −1. We present

H2(F1,Z) in the basis,

(5.1) Z[B,F ]/⟨B2 = −1,B ⋅ F = 1, F ⋅ F = 0⟩

Effective curve classes nB +mF satisfy m − n,n ≥ 0. The toric boundary of F1 is the

anti-canonical class 2F + B + π∗H, where π∗H is the pullback of the hyperplane class

H ∈ H2(P2,Z) under the toric blow up π ∶ F1 → P2. We have π∗H = B + F is the

hyperplane class satisfying π∗H ⋅ π∗H = 1.
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5.2.5.1. Invariants of Vertex V1. For vertex V1, we have nV1 = 0 and rV1 = 2. The

moduli space associated to this vertex is MV1 ∶= MgV1 ,2
(LX(logLE), β), or genus gV1 ,

basic stable log maps with two relative contact points to LX(logLE) in curve class β,

where the first contact point is fixed and has tangency order 1, and the second contact

point has tangency order e − 1. As virtual classes are compatible under base change, we

evaluate the degree by Gysin restriction of the evaluation map to E × 0. The moduli

space we are then interested in isMgV1 ,2
(X(logE), β)(1,e−1), which has virtual dimension

g + 1. Since the normal bundle NX×0/X×P1 ∣X×0 is isomorphic to OX , we have the relation

of virtual classes [M(LX(logLE), β)]vir = (−1)gλg ∩ [M(X(logE), β)]vir. The invariant

associated to vertex V1 is therefore,

(5.2) RgV1 ,(1,e−1)(X(logE), β) ∶= ∫[MgV1
,2(X(logE),β)(1,e−1)]vir

(−1)gV1λgV1ev
∗([pt])

where [pt] ∈ A1(E), which is the same two-pointed invariant as in Chapter 4. These

invariants can be computed by the tropical/holomorphic correspondence in [Gra] or by

wall crossing in the quantized scattering diagram of X(logE).

5.2.5.2. Invariants of Vertex V2. By Lemma 5.4 of [vGGR], we have that nV2 = 0 and

rV2 = 1. The moduli space associated to this vertex isMV2 ∶=MgV2 ,1
(LY (logLE), (e−1)B),

or genus gV2 , basic stable log maps to LY (logLD) in curve class (e−1)B with one relative

contact point of maximal tangency (e−1). Confining the evaluation map to lie in E, we are

interested in the moduli space MgV2 ,1
(F1(logF ), (e − 1)B), which has virtual dimension

gV2 . The obstruction theories defining [M(LY , (e − 1)B)]vir and [M(F1, (e − 1)B)]vir

differ by e(R1π∗f∗NF1/LY
). Since the normal bundle of F1 ↪ LY is trivial, the obstruction
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theories differ by capping with λg = e(R1π∗f∗OF1). The invariant associated to vertex V2

is therefore,

(5.3) RgV2 ,(e−1)(F1(logF ), (e − 1)B) ∶= ∫
[MgV2

,1(F1(logF ),(e−1)B)]vir
(−1)gV2λgV2

which is the same maximal tangency invariant as in Chapter 4. Since B ≅ P1 is rigid

with normal bundle OP1(−1), any stable map factors through B. The invariants we want

to compute are the local relative invariants of P1 of [BP05]. The obstruction theories

defining [M(F1, (e− 1)B)]vir and [M(P1, (e− 1)[P1])]vir differ by e(R1π∗f∗NB/F1
). As a

result, the right hand side of RgV2 ,(e−1)(F1(logF ), (e − 1)B) is the invariant,

∫
[MgV2

,1(P1(log∞),(e−1)[P1]]vir)
e(R1π∗f

∗(OP1 ⊕OP1(−1)))

These invariants were computed in [BP05], Theorem 5.1 or [Bou6], Lemma 5.9. It is the

coefficient of h̵2gV2 in the expression,

(−1)e
(e − 1)

ih̵

q(e−1)ih̵/2 − q−(e−1)ih̵/2

with q = eih̵. It is h̵
2 csc

(e−1)h̵
2 , and the first few terms are (−1)e

(e−1)2 +
(−1)e
24 h̵2+ 7(−1)e(e−1)2

5760 h̵4+ . . .

5.2.5.3. Invariants of Vertex V3. Vertex V3 contains the interior marked point, and we

have nV3 = rV3 = 1. The moduli space associated to this vertex isMV3 ∶=MgV3 ,2
(LY (logLE),B+

F ), or genus gC , basic stable log maps to LY (logLE) in curve class B + F (see Equation

5.1) with one fixed interior point and one relative contact point with tangency order 1.

It has virtual dimension 4. After Gysin restriction to a point on E, the moduli space
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is MgV3 ,2
(F1(logF ),B + F ), which has virtual dimension gV3 + 3. Notice that the curve

class B + F is the hyperplane class π∗H, which has generic contact order 1 with the log

structure F.

As maps inMV3 andMV1 are required to map to the same point in E × 0, we define

the invariant associated to MV3 by fixing the relative contact point in addition to the

fixed interior point,

(5.4) RgV3 ,2
(F1(logF ),B + F ) ∶= ∫

[MgV3
,2(F1(logF ),B+F )]vir

(−1)gV3λgV3ev
∗
1([pt1])ev∗2([pt2])

where [pt1] ∈ A2(F1) and [pt2] ∈ A1(F ). Let γ ∶= (−1)gV3λgV3ev
∗
1([pt1])ev∗2([pt2]) ∈

AgV3+3(MV3). In genus 0, this invariant is the number of lines through two points, or

1. In Section A.3 of the Appendix, we evaluate the genus 1 invariant to be −124 . In arbi-

trary genus g, work in progress predicts that the invariant Rg,2(F1(logF ),B +F ) is given

by the h̵2g-coefficient of the expression (−i)(q 1
2 − q−12 ), which is determined by q-refined

tropical curve counting [Bou2].

Remark 14. For the moduli space MV3, we have a non-toric divisorial log structure

given by the fiber F of F1. Most of the literature in the log Gromov-Witten theory of toric

surfaces has the toric boundary as divisorial log structure [Bou2], [Bou6], [MR]. There

have been results with a non-toric divisorial log structure. Cavalieri, Johnson, Markwig,

and Ranganathan use floor diagrams to relate descendant log Gromov-Witten theory of

Hirzebruch surfaces to bosonic Fock space, in which tangency orders of stable log maps

are mapped to basis vectors of Fock space.
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By evaluating the degree ofMV for each vertex V ∈ V (Γ), we arrive at the following

expression for Ng,1(Z,β + h).

Proposition 3. We have,

Ng,1(Z,β + h) = ∑
Γ∈Γ(g,n,β),

g=gV1+gV3+gV3

[(β ⋅E − 1)RgV1 ,(1,β⋅E−1)(X(logE), β)⋅

RgV2 ,(β⋅E−1)(F1(logF ), (β ⋅E − 1)B)RgV3 ,2
(F1(logF ),B + F )]

where the invariants RgV1 ,(1,β⋅E−1)(X(logE), β),RgV2 ,(β⋅E−1)(F1(logF ), (β ⋅E − 1)B), and

RgV3 ,2
(F1(logF ),B + F ) are respectively given in Equations 5.2, 5.3, 5.4.

Proof. We refer to Sections 5.2.5.1, 5.2.5.2,5.2.5.3 for the description of the invariants.

We order the edges of the bipartite graph Γ in 18 such that the edge representing the

fixed relative contact point is the top edge. Then, we apply the degeneration formula of

[KLR]. □

5.3. Obtaining all genus local Gromov-Witten invariants

We prove Theorem 14 which relates invariants Ng,1(Z) of the projective compactifi-

cation to local invariants of the blow up X̂. Our main tool is the higher genus log-local

principle of [BFGW]. We provide explicit formulas in genus 1 and 2.

We introduce formal variables Q and h̵ to keep track of effective curve classes and

genus, respectively. Given a curve class β ∈H+2 (X,Z) with e ∶= β ⋅E, define the generating

functions,
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FV2 = ∑
gV2≥0

RgV2 ,1
(F1(logF ), (e − 1)B)h̵2gB

FV3 = ∑
gV3≥0

RgV3 ,2
(F1(logF ),B + F )h̵2gV3

Note that FV2 and FV3 are independent of β.

Proof of Theorem 14. We sum over all genus in Proposition 3 to have,

∑
g≥0
Ng,1(Z,β + h)h̵2g = (β ⋅E − 1)

⎛
⎝ ∑gV1≥0

RgV1 ,(1,β⋅E−1)(X(logE), β)h̵
2gV1
⎞
⎠
FV2FV3(5.5)

Summing over all curve classes β ∈ H+2 (X,Z) and applying Corollary 6.6 of [GRZ] to

RgV1 ,2
(X(logE)) in Equation 5.5, we have that,

∑
β∈H+2 (X,Z)

∑
g≥0
Ng,1(Z,β + h)h̵2gQβ = ∑

β∈H+2 (X,Z)

⎡⎢⎢⎢⎢⎣
(β ⋅E − 1)( ∑

gV1≥0
[RgV1 ,(β⋅E−1)(X̂, π

∗β −C)

−
gV1−1

∑
i=0

Ri,(1,β⋅E−1)(X(logE), β)N(gV1 − i,1)]h̵2gV1)FV2FV3
⎤⎥⎥⎥⎥⎦
Qβ

(5.6)

Applying the g > 0 log-local principle [BFGW] (Theorem 25 of the Appendix) toRgV1
(X̂, π∗β−

C) in Equation 5.6, it becomes,
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∑
β∈H+2 (X,Z)

∑
g≥0
Ng,1(Z,β + h)h̵2g = ∑

β∈H+2 (X,Z)

⎡⎢⎢⎢⎢⎣
(β ⋅E − 1)

⎛
⎝ ∑gV1≥0

[(−1)β⋅E(β ⋅E − 1)[NgV1
(KX̂ , π

∗β −C)

−∑
n≥0

∑
gV1=h+g1+...+gn,
a=(a1,...,an)∈Zn

≥0,

π∗β−C=dE[E]+β1+...+βn,
dE≥0,βj ⋅D>0

(−1)gV1−1+(E⋅E)dE(E ⋅E)m
m!∣Aut(a, gV1)∣

Nh,(a,1m)(E,dE)

n

∏
j=1
((−1)βj ⋅E(βj ⋅E)Rgj ,(βj ⋅E)(X̂, βj)]

−
gV1−1

∑
i=0

Ri,(1,β⋅E−1)(X(logE), β)N(gV1 − i,1)]h̵2gV1
⎞
⎠
FV2FV3

⎤⎥⎥⎥⎥⎦
Qβ

(5.7)

Define ∆pl to be the term in the right hand side of Equation 5.7 given by,

∆pl ∶= ∑
β∈H+2 (X,Z)

⎡⎢⎢⎢⎢⎣
(β ⋅E − 1)

⎛
⎝ ∑gV1≥0

[(−1)β⋅E(β ⋅E − 1)∑
n≥0
[ ∑

gV1=h+g1+...+gn,
a=(a1,...,an)∈Zn

≥0,

β=dE[E]+β1+...+βn,
dE≥0,βj ⋅D>0

(−1)gV1−1+(E⋅E)dE(E ⋅E)m
m!∣Aut(a, gV1)∣

Nh,(a,1m)(E,dE)
n

∏
j=1
((−1)βj ⋅E(βj ⋅E)Rgj ,(βj ⋅E)(X̂, βj)]

+
gV1−1

∑
i=0

Ri,(1,β⋅E−1)(X(logE), β)N(gV1 − i,1)]h̵2gV1)FV2FV3
⎤⎥⎥⎥⎥⎦
Qβ

(5.8)

For g ≥ 0 and β ∈H+2 (X,Z), define ∆pl(g, β) by the expression,
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(5.9) ∆pl = ∑
gV1≥0

∑
β∈H+2 (X,Z)

∆(gV1 , β)plh̵2gV1Qβ

Substituting ∆pl into Equation 5.7 simplifies to,

∑
β∈H+2 (X,Z)

∑
g≥0
Ng,1(Z,β + h)h̵2g = ∑

β∈H+2 (X,Z)

⎡⎢⎢⎢⎢⎣
(−1)β⋅E(β ⋅E − 1)2

⎛
⎝ ∑gV1≥0

NgV1
(KX̂ , π

∗β −C)h̵2gV1
⎞
⎠
FV2FV3

⎤⎥⎥⎥⎥⎦
Qβ

−∆pl

(5.10)

For each gV1 ≥ 0 and β ∈ H+2 (X,Z), there exists a constant c(gV1 , β) that represents the

overall contribution of FV2FV3 to the coefficient of h̵2gV1 . By absorbing (−1)β⋅E(β ⋅E − 1)2

into c(gV1 , β) as well, Equation 5.10 becomes,

∑
β∈H+2 (X,Z)

∑
g≥0
Ng,1(Z,β + h)h̵2g = ∑

β∈H+2 (X,Z)
∑
gV1≥0
[c(gV1 , β)NgV1

(KX̂ , π
∗β −C)h̵2gV1Qβ] −∆pl

(5.11)

Applying the closed Gopakumar-Vafa formula for toric Calabi-Yau threefolds, Equation

5.11 is equal to,

∑
β∈H+2 (X,Z)

∑
g≥0
Ng,1(Z,β+h)h̵2g = ∑

β∈H+2 (X,Z)
∑
gV1≥0

⎡⎢⎢⎢⎢⎣
c(gV1 , β)ngV1(KX̂ , π

∗β −C)( ih̵

q
1
2 − q−12

)
2gV1−2

Qβ

⎤⎥⎥⎥⎥⎦
−∆pl

Relabelling gV1 by g proves Theorem 14. □
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Remark 15. By the degeneration argument of Corollary 6.6 of [GRZ], the max-

imal tangency invariants Rg,1(X̂) can be expressed in terms of two-pointed invariants

Rh,2(X(logE)) for h ≤ g. Therefore, the discrepancy term ∆pl is a function of the sta-

tionary invariants Nh,(a,1m)(E,dE) of the elliptic curve and two-pointed log invariants

Rh,2(X(logE), β) for h ≤ g. We refer to the Theorem 25 in the Appendix for the defini-

tion of the stationary invariants Nh,(a,1m)(E,dE).

5.3.1. Formulas in genus 1 and 2

We give an explicit formula for Theorem 14 in genus 1 and a conjectured formula in genus

2. For simplicity, we will at times suppress notation for the log structure or curve class

by writing Rg,(p,q)(X(logE), β) as Rg,(p,q)(X).

Corollary 1 (Theorem 1 in genus 1). Let β ∈ H+2 (X,Z). In genus 1, we have the

equality,

N1,1(Z,β + h) = n1(KX̂ , π
∗β −C) − δ1(β)

where n1(KX̂ , π
∗β − C) is the genus 1, Gopakumar-Vafa invariant of KX̂ , and δ1(β) is

expressed in terms of stationary invariants of the elliptic curve defined in Appendix A,

Equation 38. Summing over all curve classes, we have,

∑
β∈H+2 (X,Z)

N1,1(Z,β + h)Qβ = ∑
β∈H+2 (X,Z)

[n1(KX̂ , π
∗β −C) − δ1(β)]Qβ

Proof. Let β ∈ H+2 (X,Z) be an effective curve class, and e ∶= β ⋅ E. The respective

genus 1 invariants in FV2 and FV3 are (−1)
e

24 and −1
24 . By Proposition 3, we have that,
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N1,1(Z,β + h) = (e − 1) [
(−1)e
(e − 1)2R1,(1,e−1)(X(logE), β)

+ (−1)
e

24
R0,(1,e−1)(X(logE), β)

+ (−1)e+1
24(e − 1)2R0,(1,e−1)(X(logE), β)]

(5.12)

Applying Corollary 6.6 of [GRZ] to R1,(1,e−1)(X) on the right hand side of Equation 5.12,

we have,

N1,1(Z,β + h) =
(−1)e
(e − 1)R1,(e−1)(X̂) + (

(−1)e+1
24(e − 1) +

(−1)e(e − 1)
24

+ (−1)
e+1

24(e − 1))R0,(1,e−1)(X)

(5.13)

The genus 1, log-local principle [BFGW] tells us that,

R1,(e−1)(X̂) = (−1)e(e − 1) [N1(KX̂) +
(−1)e+1(e − 1)

24
R0,(e−1)(X̂) − δ1(β)]

where δ1(β) is defined in Equation 38 in the Appendix. Applying this to Equation 5.13,

we have,

N1,1(Z,β + h) = N1(KX̂) +
(−1)e+1(e − 1)

24
R0,(e−1)(X̂) − δ1(β)

+ ( (−1)
e+1

24(e − 1) +
(−1)e(e − 1)

24
+ (−1)

e+1

24(e − 1))R0,(1,e−1)(X,β)
(5.14)

The g = 1 closed Gopakumar-Vafa formula for Calabi-Yau threefolds for the primitive

curve class π∗β −C states,
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(5.15) N1(KX̂ , π
∗β −C) = n1(KX̂ , π

∗β −C) + 1

12
n0(KX̂ , π

∗β −C)

We also have by Corollary 6.6 of [GRZ] and the g = 0 log-local principle [vGGR] the

first and second equality, respectively,

(5.16)

R0,(1,e−1)(X(logE), β) = R0,(e−1)(X̂(logπ∗E −C), π∗β −C) = (−1)e(e− 1)n0(KX̂ , π
∗β −C)

Applying both Equations 5.15,5.16 to Equation 5.14, we have,

N1,1(Z,β + h) = n1(KX̂) +
(−1)e

12(e − 1)R0,(1,e−1)(X) +
(−1)e+1(e − 1)

24
R0,(e−1)(X̂) − δ1(β)

+ ( (−1)
e+1

24(e − 1) +
(−1)e(e − 1)

24
+ (−1)

e+1

24(e − 1))R0,(1,e−1)(X,β)

(5.17)

Using R0,(1,e−1)(X) = R0,(e−1)(X̂) ([GRZ], Corollary 6.6), the coefficients of R(X) and

R(X̂) sum to 0 in Equation 5.17. Thus we have the equality,

N1,1(Z,β + h) = n1(KX̂ , π
∗β −C) − δ1(β)

Summing over all curve classes in X, we have the desired expression. □
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Remark 16. The genus 0 result in [Cha] proves that N0,1(Z,β+h) = O0(KX , β+β0,1),

and [LLW] show that O0(KX , β + β0,1) = N0(KX̂ , π
∗β −C). In genus 0, the Gopakumar-

Vafa formula tells us that N0(KX̂ , π
∗β −C) = n0(KX̂ , π

∗ −C). Hence, we have

N0,1(Z,β + h) = n0(KX̂ , π
∗ −C)

In Corollary 1, we see that in genus 1, the equality is corrected by stationary invariants

of the elliptic curve δ1(β).

We provide a conjectured corollary of Theorem 1 in genus 2, with the assumption that

the genus 2 invariant of Vertex V3 is given by the h̵4-coefficient of (−i)(q 1
2 − q−12 ) (see

Section 5.2.5.3).

Corollary 2 (Theorem 1 in genus 2). In genus 2, we have,

∑
β∈H+2 (X,Z)

N2,1(Z,β+h)Qβ = ∑
β∈H+2 (X,Z)

[(−1)β⋅E(β ⋅E − 1)2n2(KX̂ , π
∗β −C) −∆pl,∗(2, β)]Qβ

where n2(KX̂ , π
∗β −C) is the genus 2, Gopakumar-Vafa invariant of KX̂ , and ∆pl,∗(2, β)

is defined in Equation 5.21.

Proof. Let β ∈ H+2 (X,Z) be an effective curve class, and e ∶= β ⋅ E. The genus 2

invariant in FV2 is 7(−1)e(e−1)2
5760 and the genus 2 invariant in FV3 is conjectured to be 1

1920 ,

respectively. By Proposition 3, we have,
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N2,1(Z,β + h) = (e − 1)(
(−1)e
(e − 1)2R2,(1,e−1)(X(logE))

+ [ (−1)
e+1

24(e − 1)2 +
(−1)e
24
]R1,(1,e−1)(X(logE))

+ [ (−1)e
1920(e − 1)2 +

7(−1)e(e − 1)2
5760

+ (−1)
e+1

576
]R0,(1,e−1)(X(logE)))

(5.18)

Applying Corollary 6.6 in [GRZ] to R2,(1,e−1)(X(logE)) in the right hand side of Equation

5.18, it becomes,

N2,1(Z,β + h) = (e − 1)(
(−1)e
(e − 1)2 [R2,(e−1)(X̂) −

R1,(1,e−1)(X(logE,β)
24

−
7R0,(1,e−1)(X(logE), β)

5760
]

+ [ (−1)
e+1

24(e − 1)2 +
(−1)e
24
]R1,(1,e−1)(X(logE), β)

+ [ (−1)e
1920(e − 1)2 +

7(−1)e(e − 1)2
5760

+ (−1)
e+1

576
]R0,(1,e−1)(X(logE), β))

(5.19)

Applying g > 0 log-local to the above, we have,

(5.20) N2,1(Z,β + h) = (−1)e(e − 1)2N2(KX̂ , π
∗β −C) −∆pl(2, β)

where ∆pl(2, β) is defined in Equation 5.9.

Recall that the genus 2, closed Gopakumar-Vafa formula for Calabi-Yau threefolds

states that

N2(KX̂ , π
∗β −C) = n2(KX̂ , π

∗β −C) + 1

240
n0(KX̂ , π

∗β −C)
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and by the genus 0 log-local principle [vGGR], we have,

n0(KX̂) =
(−1)e
e − 1 R0,(e−1)(X̂, π∗β −C)

We define,

(5.21) ∆pl,∗(2, β) ∶=∆pl(2, β) − (e − 1)
240

R0,(e−1)(X̂, π∗β −C)

Thus, we have,

(5.22) N2,1(Z,β + h) = (−1)e(e − 1)2n2(KX̂ , π
∗β −C) −∆pl,∗(2, β)

Summing over all curve classes, we have the corollary. □

5.4. Blow up formulas for Gromov-Witten invariants

Blow up formulas in Gromov-Witten theory have been studied by [Ga], [Hu] in genus

0. In real dimension 6, all genus blow up formulas for descendant invariants appear in

[HHKQ]. In logarithmic Gromov-Witten theory, they appear in the work of [AW], which

allows for more general birational morphisms.

As an application of Theorem 14, we prove a blow up formula for invariants of projec-

tive bundles in all genus. Our result differs from previous results, as it allows for higher

genus invariants with only a single point constraint and curve classes that are strict trans-

forms. Our main tool is flop invariance of Gromov-Witten invariants of threefolds. We

give an explicit formula in genus 1 and a conjectured formula in genus 2 in Corollary 3.
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5.4.1. The spaces involved

Recall that we have a log Calabi-Yau surface X with a smooth elliptic curve E, and

Z ∶= P(KX ⊕ OX) is the projective compactification of its canonical bundle. There are

two distinguished sections E0,E∞ ⊂ Z, both isomorphic to X, that correspond to the

summands P(0 ⊕ OX) and P(KX ⊕ 0), respectively. We defined the invariants Ng,1(Z)

associated to the moduli spaceMg,1(Z,β + h) in the above sections.

Let π ∶ X̂ →X be the blow up at a single point of X, with exceptional curve C. Define

Ẑ ∶= P(KX̂ ⊕ OX̂). Let p ∈ E∞, and L ≅ P1 ⊂ Z be the unique fiber passing through p.

DefineW ∶= BlpZ, or the blow up at p of Z, with π1 ∶W → Z. Let L̃ be the strict transform

of L under π1. It is a smooth rational curve with normal bundle OP1(−1)⊕OP1(−1). We

call such a curve a (−1,−1)-curve.

5.4.2. The invariants

We relate one-pointed Gromov-Witten invariants Ng,1(Z) to unmarked invariants of W

via the intermediate space Ẑ. To do this, we define some additional invariants. Let

Mg,0(KX̂ , π
∗β −C) be the moduli space of genus g, unmarked maps to KX̂ in the curve

class π∗β −C. Since KX̂ is Calabi-Yau and of dimension 3, the virtual dimension is 0 by

Riemann-Roch. We define,

Ng,0(KX̂ , π
∗β −C) ∶= ∫

[Mg,0(KX̂ ,π
∗β−C)]vir

1

Let Mg,0(W,β + L̃) be the moduli space of genus g, unmarked maps to W in the curve

class β + L̃. Since c1(TW )(β) = c1(TW )(L̃) = 0, its virtual dimension is 0. We define,
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Ng,0(W,β + L̃) ∶= ∫
[Mg,0(W,β+L̃)]vir

1

We will at times write Ng,0(KX̂ , π
∗β −C) and Ng,0(W,β + L̃) as ⟨1⟩X̂g,0,π∗β−C and ⟨1⟩W

g,0,β+L̃

respectively.

5.4.3. Flop Invariance

Invariance of Gromov-Witten invariants of threefolds under birational transformations

has garnered considerable interest. In particular, flops are birational transformations

that are compositions of blow ups and blow downs along a (−1,−1)-curve that have been

studied in Gromov-Witten theory. Li and Ruan proved that Gromov-Witten invariants

behave functorially with respect to flops [LR]. Their result has been used to prove genus

0 open-closed equalities for toric Calabi-Yau threefolds [LLW]. It has also motivated

wide ranging results in the topological vertex [KM], the Crepant Resolution conjecture

[BG], Gopakumar-Vafa/Stable Pair correspondences [MT], and Donaldson-Thomas the-

ory [HL]. Flop invariance of Gromov-Witten invariants states that,

Theorem 20. ([LR]) For a simple flop φ ∶ X ⇢ Y between threefolds, if β is not a

multiple of an exceptional curve, i.e. a rational curve with self-intersection -1, then we

have the following equality in all genus,

⟨φ∗γ1, . . . , φ∗γn⟩Xg,n,β = ⟨γ1, . . . , γn⟩Yg,n,φ(β)

Using the above theorem, we have the following lemma equating the invariants of W

and Ẑ.
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Lemma 8. For all g ≥ 0, we have the equality,

Ng,0(W,β + L̃) = Ng,0(Ẑ, π∗β −C)

Proof. There exists a flop φ ∶ W ⇢ Ẑ along the smooth (−1,−1)-curve L̃ such that

φ(L̃) = −C (see [LLW], Proposition 3.1 for more details). By Theorem 20, we have the

desired equality. □

5.4.3.1. Description of the flop for P2. When the underlying surface is P2, we describe

the flop between BlpZ and P(KF1 ⊕OF1) from their toric fans. Recall that a toric variety

is Calabi-Yau, if there exists a vector ν such that (ν, vi) = 1 for all primitive vectors vi

of its 1-dimensional cones. This implies that toric Calabi-Yau varieties are non-compact,

since their fans are not complete.

Consider the fan Σ of local P2. It is the cone over the convex hull of the fan of P2. Its one

dimensional cones Σ(1) are given by the vectors {(0,0,1), (1,0,1), (0,1,1), (−1,−1,1)},

and its three dimensional cones are the cones over the three smaller triangles in the plane

z = 1. The fan of local F1 is similarly defined as the cone over the convex hull of the fan

of F1.

Figure 5.3. The fans of KP2 and KF1 respectively on the left and right.
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Adding the ray generated by (0,0,−1) to Σ gives the fan (and after completing to

a convex fan) of the projective compactification Z = P(KP2 ⊕OP2), where (0,0,−1) cor-

responds to the divisor at infinity E∞ ⊂ Z. The resulting fan is shown in Figure 5.4.

Blowing up a toric fixed point p ∈ E∞ corresponds to adding the ray (0,−1,1) which is

the sum of rays (1,0,1) + (−1,−1,1) + (0,0,−1). The resulting space is thus W = BlpZ.

Figure 5.4. The fan of Z = P(KP2 ⊕OP2) that is obtained from that of KP2

by adding the 1-dimensional cone generated by (0,0,−1) (and completing
to a convex fan).

We now describe the flop W ⇢ P(KF1 ⊕ OF1) shown in Figure 5.5. The four rays

(0,0,1), (1,0,1), (0,−1,1), and (−1,−1,1) in the fan ofW form a quadrilateral in the plane

z = 1, with a diagonal connecting (1,0,1) and (−1,−1,1). The flop along the (−1,−1)-

rational curve switches the diagonal to connect (0,0,1) and (0,−1,1). The resulting fan

is that of P(KF1 ⊕OF1).

5.4.4. Proof of Theorem 15

We first have a lemma that shows the Gromov-Witten invariants of KX̂ and Ẑ in curve

classes π∗β −C are equal.
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Figure 5.5. The flop between the spaces P(KF1⊕OF1) andW = BlpZ, whose
fans are respectively on the left and right (and completing to convex fans).
It is the composition of a blow up and blow down of a smooth rational
(−1,−1)-curve.

Lemma 9. For all g ≥ 0, we have that Ng,0(KX̂ , π
∗β −C) = Ng,0(Ẑ, π∗β −C).

Proof. Under the C∗-action that scales the P1-fiber, the fixed point set ofMg,0(Ẑ, π∗β−

C) is isomorphic toMg,0(X̂, π∗β−C). By virtual localization, the two invariants are equal

(see [KM], Proposition 2.2). □

By blowing up, we effectively rid of the point constraint defining Ng,1(Z,β + h) by

considering invariants with one less point constraint to the blown up space W = BlpZ.

Proof of Theorem 15. Applying the Gopakumar-Vafa formula to the right side of

Theorem 14, there exist constants c(g, β) ∈ Q such that,

∑
β∈H+2 (X,Z)

∑
g≥0
Ng,1(Z,β + h)h̵2gQβ = ∑

β∈H+2 (X,Z)
∑
g≥0
c(g, β)Ng,0(KX̂ , π

∗β −C)h̵2gQβ −∆pl

(5.23)

By Lemma 9, Equation 5.23 becomes,
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∑
β∈H+2 (X,Z)

∑
g≥0
Ng,1(Z,β + h)h̵2gQβ = ∑

β∈H+2 (X,Z)
∑
g≥0
c(g, β)Ng,0(Ẑ, π∗β −C)h̵2gQβ −∆pl

(5.24)

By Lemma 8, Equation 5.24 becomes,

∑
β∈H+2 (X,Z)

∑
g≥0
Ng,1(Z,β + h)h̵2gQβ = ∑

β∈H+2 (X,Z)
∑
g≥0
c(g, β)Ng,0(W,β + L̃)h̵2gQβ −∆pl

(5.25)

and we have shown the desired conclusion. □

5.4.5. Formulas in Genus 1 and 2

We give an explicit blow up formula in genus 1 and conjectured formula in genus 2.

Corollary 3 (Theorem 2 in genus 1 and 2). In genus 1, Theorem 15 reduces to,

∑
β∈H+2 (X,Z)

N1,1(Z,β + h)Qβ = ∑
β∈H+2 (X,Z)

[N1,0(W,β + L̃) −
1

12
N0,0(W,β + L̃) − δ1(β)]Qβ

and in genus 2, we are conjectured to have,

∑
β∈H+2 (X,Z)

N2,1(Z,β + h)Qβ = ∑
β∈H+2 (X,Z)

(−1)β⋅E(β ⋅E − 1)2 [N2,0(W,β + L̃) −
1

240
N0,0(W,β + L̃)

− ∆pl,∗(2, β)]Qβ

with δ1(β) defined in Equation 38, and ∆pl,∗(2, β) defined in Equation 5.21.
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Proof. By Corollary 1, the genus 1 Gopakumar-Vafa formula for threefolds, and Lem-

mas 9, 8 respectively, we have that,

N1,1(Z,β + h) = n1,0(KX̂) − δ1(β)

= N1,0(KX̂ , π
∗β −C) − 1

12
N0,0(KX̂ , π

∗β −C) − δ1(β)

= N1,0(Ẑ, π∗β −C) −
1

12
N0,0(Ẑ, π∗β −C) − δ1(β)

= N1,0(W,β + L̃) −
1

12
N0,0(W,β + L̃) − δ1(β)

Summing over all curve classes, we have the desired expression. The conjectured case for

genus 2 is similar. □

Remark 17. In [HHKQ], Theorem 1.1, they use the degeneration formula to prove a

blow up formula for descendant invariants of threefolds. Theorem 15 extends their result

by covering cases when invariants have only a single point constraint.

5.5. Open-closed conjectures for projective bundles

Applying Conjecture 9 to Theorem 14, Conjecture 4 follows. We remark that in genus

0, Conjecture 4 was proven in [Cha]. In genus 1 and 2, Conjecture 4 takes the following

form,

Conjecture 5 (Conjecture 2 in genus 1 and 2). Let β ∈ H+2 (X,Z). In genus 1, we

have,

N1,1(Z,β + h) = nopen1 (KX , β + β0,1) − δ1(β)

where δ1(β) is defined in Equation 38.
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In genus 2, we have,

N2,1(Z,β + h) = (−1)β⋅E+1(β ⋅E − 1)2nopen2 (KX , β + β0,1) −∆pl,∗(2, β)

where ∆pl,∗(2, β) is defined in Equation 5.21.

Summing over all curve classes, we have,

∑
β∈H+2 (X,Z)

N1,1(Z,β + h)Qβ = ∑
β∈H+2 (X,Z)

[nopen1 (KX , β + β0,1) − δ1(β)]Qβ

and

∑
β∈H+2 (X,Z)

N2,1(Z,β + h)Qβ = ∑
β∈H+2 (X,Z)

[(−1)β⋅E+1(β ⋅E − 1)2nopen2 (KX , β + β0,1)Qβ −∆pl,∗(2, β)]Qβ

We now prove Theorem 16,

Proof of Theorem 16. This follows by Theorem 24 applied to Theorem 14. □
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CHAPTER 6

Open-log conjecture for log Calabi-Yau surfaces with smooth

anti-canonical divisor, with results for P2

In this chapter, we conjecture an all genus correspondence between two-pointed loga-

rithmic invariants of X(logE) with winding 1 and framing 0 open invariants of an outer

Aganagic-Vafa brane in the canonical bundle KX , and show that it is equivalent to a

conjecture relating open and closed BPS invariants from the topological vertex. When

X = P2, we provide a proof in low degrees and all genus. Our methods rely on the

scattering diagrams of Gross-Siebert. We provide explicit formulas of the open-log corre-

spondence in genus 1 and 2. We provide computational validity for the correspondence in

various cases. We discuss an application to quantum theta functions and wavefunctions.

6.1. Introduction

Recall that X is a toric Fano surface with a smooth anticanonical divisor E, and

π ∶ X̂ → X is blow up of X at a point. Let β ∈ H+2 (X,Z) be an effective curve class,

and e ∶= β ⋅E. From Chapter 4, recall that we have the genus g, two-pointed log invariant

Rg,(1,e−1)(X(logE), β) in class β with one fixed contact point of tangency order 1 and

another contact point with order e − 1 with E, and the the genus g, winding 1, open

Gromov-Witten invariant Og(KX , β + β0,1) of the canonical bundle KX in class β + β0

with boundary on a a single Aganagic-Vafa brane, with its corresponding open BPS

invariant nopeng (KX , β + β0,1).
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6.1.1. Plan

In Section 6.2, we first provide a review of the genus 0 open-log correspondence estab-

lished by [GRZ], in order to use those techniques in higher genus. Then, we establish a

correspondence between q-refined tropical curves and higher genus local Gromov-Witten

invariants of X̂ in Section 6.3,

Theorem 21 (Theorem 3). Let (X,E) be log Calabi-Yau surface X with smooth

anticanonical divisor E. Then, we have,

∑
β∈H+2 (X,Z)

∑
g≥0
Rtrop
g,(β⋅E−1,1)(X,β)h̵

2gQβ = ∑
β∈H+2 (X,Z)

∑
g≥0

⎡⎢⎢⎢⎢⎣
(−1)β⋅E+g−1ng(KX̂ , π

∗β −C)( ih̵

q
1
2 − q−12

)
2g−2

Qβ

⎤⎥⎥⎥⎥⎦

−∆ol

where Rtrop
g,(β⋅E−1,1)(X,β) is the genus g, two-legged, q-refined tropical curve count in the

scattering diagram associated to (X,E) (see Chapter 3 for definition of these invariants),

and ng(KX̂ , π
∗β −C) is the genus g, Gopakumar-Vafa invariant of KX̂ in class π∗β −C,

∆ol is a discrepancy term defined in Equation 6.10 that is a function of the stationary

Gromov-Witten theory of the elliptic curve and two pointed log invariants of X(logE),

and q = eih̵.

Applying Conjecture 9 in Chapter 7 to Theorem 21, we conjecture an open-log corre-

spondence relating genus g, winding 1, framing 0, open Gromov-Witten invariants of an

outer AV-brane in KX to 2-pointed logarithmic Gromov-Witten invariants of X(logE)

when E is smooth,
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Conjecture 6 (Open-log conjecture for smooth divisor, Conjecture 1). Let (X,E)

and ∆ol be as in Theorem 21. Furthermore, assume that X is toric, and π ∶ X̂ → X is a

toric blow up. Then, we conjecture the following correspondence,

∑
β∈H+2 (X,Z),

g≥0

(β ⋅E − 1)Rg,(β⋅E−1,1)(X(logE), β)h̵2gQβ = ∑
β∈H+2 (X,Z),

g≥0

[ (−1)
g+1

(β ⋅E − 1)n
open
g (KX , β + β0,1)

( ih̵

q
1
2 − q−12

)
2g−2

Qβ

⎤⎥⎥⎥⎥⎦
−∆ol

where Rg,(β⋅E−1,1)(X(logE), β) are two-pointed log invariants of X(logE) with λg-insertion

in class β, and ng(KX , β+β0,1) is the genus g, winding 1, framing 0, open BPS invariant

of a single outer AV-brane L in KX , and q = eih̵.

We refer to Chapter 4 and 3 for more detailed definitions of the above invariants.

After using the results in Chapter 7, we establish the following theorem from Conjec-

ture 6,

Theorem 22 (Theorem 4). Let X = P2 and H ∈H2(P2,Z) the hyperplane class. Then

Conjecture 6 holds in curve classes β = dH for d = 1,2,3,4 and all genus.

Consequently, Theorem 22 tells us that genus g, open Gromov-Witten invariants Og

of a toric Calabi-Yau threefold KX can be expressed in terms of genus h, 2-pointed log

invariants Rh,(β⋅E−1),1(X(logE)) and the stationary Gromov-Witten theory of the elliptic

curve E, the former of which is computed in the Topological Vertex [AKMV], and the

latter appears in the scattering diagrams of Gross-Siebert mirror symmetry.
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In Section 6.4, we give explicit formulas in genus 1 and 2. In Section 6.5, we perform

computations verifying the correspondence in various cases.

In Section 6.6, we place Theorem 22 in the context of quantum theta functions from

upcoming work [GRZZ].

6.1.2. Related work: correspondences with open invariants

We mention previous work that establish correspondences between open invariants and

other enumerative invariants associated from a log Calabi-Yau surface (X,E). Previous

results in the enumerative geometry of (X,E) usually make the distinction of whether E

is singular or smooth. We say that a log Calabi-Yau surface has maximal boundary if E

is singular.

6.1.2.1. Open-log. The heuristic for open-log correspondences is the following: curves

with boundary in winding w can be ”capped off” to obtain a closed curve that intersects

the divisor at infinity with tangency order w. Logarithmic Gromov-Witten invariants

with λg-insertion in some sense should be viewed as a definition for higher genus open

invariants.

Li and Song showed that their definition of open invariants using stable relative maps in

the algebraic category recovers the Ooguri-Vafa multiple cover formula for disc invariants

[LS].

For log Calabi-Yau surfaces with singular anticanonical divisor, Bousseau, Brini, and

van Garrel showed that open invariants are related to four other enumerative theories

associated to (X,D), [BBvG]. They use the technology of quantum scattering diagrams

to conjecture and prove an all genus open-log correspondence for singular divisor. They
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L

E

w

● w

Figure 6.1. Heuristic picture of a holomorphic disc with winding w ∈
H1(L,Z) ≅ Z capped off to create a closed curve intersecting the anti-
canonical divisor with tangency order w.

also show that open invariants are related to Donaldson-Thomas invariants of a quiver

that can be constructed from the intersection numbers of the curve class with D. Brini

and Schuler extend the log-open correspondence of to quasi-tame Looijenga pairs that are

in a certain sense deformation equivalent by using quantum scattering [BS]. Schuler uses

the topological vertex to prove an all genus open-log correspondence when D = D1 +D2

[Sch].

BPS invariants associated to genus 0 log invariants were introduced in [GPS], and

proven to be integers in [vGWZ]. Log BPS numbers with λg-insertion were defined in

[Bou6] and were shown to satisfy Ooguri-Vafa duality in all genus when the boundary is

maximal.

In the setting of a smooth divisor, Choi, van Garrel, Katz and Takahashi study BPS in-

variants of local del Pezzo surfaces using the moduli of 1-dimensional sheaves [CvGKT2].

They define g = 0, log BPS numbers based on open multiple cover formulas, and prove their

integrality [CvGKT1]. A log-local principle for BPS invariants is given in [CvGKT3].
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In the context of the topological vertex, Fang and Liu define open invariants of a toric

Calabi-Yau threefold by relative invariants of a partially compactified space. They prove

their open invariants are expressed in terms of closed equivariant descendant invariants

[FL], Proposition 3.4.

6.1.2.2. Open-quiver. Bousseau proves an all genus correspondence between log in-

variants with λg-insertion with refined quiver DT invariants when the divisor D has 2

components [Bou1], which is an example of the Gromov-Witten/Kronecker correspon-

dence. In [Zas], a conjecture is made equating open BPS invariants of an Aganagic-Vafa

brane in C3 with quiver DT invariants of a loop quiver. In related work, Schrader, Shen,

and Zaslow study the open Gromov-Witten invariants of Lagrangians in C3 with a Legen-

drian link as boundary, and conjecture that such invariants satisfy Kontsevich-Soibelman

integrality [SSZ]. In [Bou6], quantized scattering diagrams are used to conjecture a log

BPS/quiver DT equality.

6.1.2.3. Open-closed. In [Cha], a genus 0 equality is established between open invari-

ants of a moment fiber of a toric canonical bundle with local invariants of the toric blow

up.

Liu and Yu use the open/relative correspondence established in [FL] to relate g = 0,

open invariants of an AV-brane in a toric Calabi-Yau threefold to maximally tangent,

relative invariants of its toric partial compactification (Ŷ , D̂). The latter are then related

to closed invariants of the CY4-fold O(−D) [LY].

In symplectic geometry, Chan, Lau, Leung, and Tseng equate open invariants of toric

Kähler manifold with closed invariants of certain P1-bundles used in the construction of

Seidel representations [CLLT].
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6.2. Review of g = 0 open-log correspondence

Gräfnitz, Ruddat, and Zaslow show that the proper Landau-Ginzburg potential asso-

ciated to (X,E) is equivalent to the open mirror map of an outer Aganagic-Vafa brane

of framing 0 in KX , by establishing a genus 0 equivalence between certain two-pointed

log invariants of (X,E) and open invariants of KX with boundary on an Aganagic-Vafa

brane [GRZ]. They use the cluster variety structure of the toric degeneration associated

to (X,E). We review the methods used in [GRZ] in order and give their higher genus

analogues to formulate an all genus open-log correspondence in Section 6.3.

6.2.1. From tropical curves to log invariants.

Recall from Chapter 3 that Rtrop
g,(p,q)(X,β,q)) is the q-refined count of two-legged tropical

curves in X with one unbounded leg of weight p and another unbounded leg of weight q

in the scattering diagram of (X,E).

Gräfnitz proves a correspondence theorem for two-pointed log invariants of log Calabi-

Yau surfaces by using the decomposition formula of [ACGS], and counting tropicaliza-

tions of stable log maps in the associated dual intersection complex. His tropical/holomorphic

correspondence theorem gives the following equality,

(6.1) Rtrop
g,(p,1)(X,β) = pRg,(p,1)(X(logE), β)

We switch the contact orders of the fixed and varying points of intersection with E of

the log invariants by using an identity of [CC], namely,
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(6.2) Rg,(p,1) =
1

p2
Rg,(1,p)

6.2.2. Trading a contact point by blowing up

Now take the genus g, maximal tangency, log invariant Rg,(p)(X̂(logπ∗E − C), π∗β − C)

of the blow up X̂ → X in class π∗β −C. These curves will intersect π∗D −C with order

p = β ⋅ E − 1. By taking the blow up of the degeneration to the normal cone, we have

the following formula relating log invariants of blow up X̂ to that of the base X ([GRZ],

Corollary 6.6),

(6.3) Rg,(p)(X̂(logπ∗E −C), π∗β −C) = ∑
g0+g1=g

Rg0,(1,p)(X(logE), β)N(g1,1)

where N(g,1) denotes the genus g, maximal tangency log invariants of OP1(−1) with λg-

insertion, defined in Section 6.2 of [GRZ], and computed by Theorem 5.1 in [BP05]. In

particular, N(g, p) is the coefficient of h̵2g in the expression (−1)
p+1

p
ih̵

qpih̵/2−q−pih̵/2 =
(−1)p+1h̵

2p csc(ph̵2 ),

where q = eih̵. We have that N(0,1) = 1 and N(1,1) = 1
24 .

Note that in g = 0, the formula states that,

R0,(p)(X̂, π∗β −C) = R0,(1,p)(X,β)

6.2.3. g = 0 log-local principle

The log-local principle of [vGGR] relates maximal tangency log invariants of X(logD)

to local invariants of KX . Suppose that β is a nef curve class, and let d ∶= β ⋅D > 0. Let
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M0,1(X(logD), β) be the moduli space of genus 0, 1-marked, maximal tangency basic

stable log maps to X(logD) in curve class β. We have a functor F ∶M0,1(X(logD), β)→

M0,0(X,β) that forgets the log structure and the single marked point of the stable log

map. Because β is nef, we have the equality of moduli spacesM(X,β) =M(KX , β), and

hence we may use F to compare virtual classes. The g = 0 log-local principle of [vGGR]

states that,

F∗[M0,1(X(logD)]vir = (−1)d+1d[M0,0(OX(−D), β)]vir

which gives us the equality,

(6.4) R0,(β⋅D)(X(logD), β) = (−1)β⋅D+1(β ⋅D)N0,0(OX(−D), β)

6.2.4. g = 0 open-closed equality

In [LLW], the authors prove that the genus 0, open invariants of the canonical bundle

KX of a toric surface are equal to genus 0, closed invariants of the canonical bundle KX̂

of the blow up, namely

(6.5) O0(KX , β + β0,1) = N0(KX̂ , π
∗β −C)

Their proof uses the invariance of Gromov-Witten invariants under simple flops [LR] as

well as the work of [Cha], which establishes an equivalence of Kuranishi structures to prove

an equivalence between open invariants of a canonical bundle KX with closed invariants

of its projective compactification P(KX ⊕OX). We shall consider higher genus invariants
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of P(KX ⊕OX) in Chapter 5. We remark that [LLW] does not use the topological vertex

to compute the above invariants.

In conclusion, [GRZ] establishes the following equality,

Theorem 23 ([GRZ]). For a toric Fano surface X with smooth anticanonical divisor

E, we have the following genus 0 equality,

O0(KX , β + β0,1) = (−1)e(e − 1)R0,(1,e−1)(X(logE), β)

When X = P2, these invariants give the coefficients of the open mirror map M(Q) of an

outer Aganagic-Vafa brane in framing 0,

M(Q) = 1 − 2Q + 5Q2 − 32Q3 + 286Q4 − 3038Q5 + . . .

They can be computed by Rtrop
g,(3d−1,1)(P2, dH) in the scattering diagram of (P2,E).

Proof. Linking together Equations 6.1-6.5 gives the desired equality. □

Remark 18. For a toric del Pezzo surface X with smooth anticanonical divisor, van

Garrel shows that g = 0, log BPS numbers are related to g = 0, local BPS invariants

by an invertible linear transformation defined by Donaldson-Thomas invariants of a loop

quiver [vG]. In genus 0 and primitive curve class, BPS invariants are equal to ordinary

Gromov-Witten invariants. Therefore, combined with the open-closed result of [LLW], the

coefficient (−1)e(e−1) in Theorem 23 should somehow be a loop quiver Donaldson-Thomas

invariant.
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Remark 19. By [vGGR], [LLW] and the Gromov-Witten/Donaldson-Thomas cor-

respondence [MNOP] applied to local X̂, Theorem 23 implies that the open invariants

O0(KX , β+β0,1) can somehow be expressed in terms of Donaldson-Thomas invariants de-

fined by moduli of ideal sheaves, and thus so can the open mirror mapM(Q). The Gromov-

Witten/Donaldson-Thomas correspondence for toric Calabi-Yau threefolds is known to be

equivalent to the topological vertex, which suggests a link between the topological vertex

and mirror symmetry for toric Calabi-Yau 3-folds.

6.3. Open-log conjecture and proof of Theorem 4

We formulate Conjecture 6 by extending the techniques in [GRZ] to higher genus,

and prove it in low degrees and all genus. Equations 6.1-6.3 are already phrased in higher

genus. In place of Equation 6.4, we use the higher genus log-local principle of [BFGW],

which is described in Appendix A. In place of the open-closed result of [LLW], we use

Conjecture 9 in Chapter 7.

We first prove Theorem 21, relating q-refined tropical curves to local Gromov-Witten

invariants of the blow up X̂.

Proof of Theorem 21. By the tropical/holomorphic correspondence in [Gra] or

Equation 6.1, we have that,

∑
g≥0

∑
β∈H+2 (X,Z)

Rtrop
g,(β⋅E−1,1)(X,β)h̵

2gQβ =∑
g≥0

∑
β∈H+2 (X,Z)

(β ⋅E − 1)Rg,(β⋅E−1,1)(X(logE), β)h̵2gQβ

(6.6)



153

By the Cadman-Chen formula or Equation 6.2, the right hand side of Equation 6.6 be-

comes,

(6.7)

∑
g≥0

∑
β∈H+2 (X,Z)

Rtrop
g,(β⋅E−1,1)(X,β)h̵

2gQβ =∑
g≥0

∑
β∈H+2 (X,Z)

1

(β ⋅E − 1)Rg,(1,β⋅E−1)(X(logE), β)h̵2gQβ

By Corollary 6.6 of [GRZ] or Equation 6.3, Equation 6.7 becomes,

∑
g≥0

∑
β∈H+2 (X,Z)

Rtrop
g,(β⋅E−1,1)(X,β)h̵

2gQβ =∑
g≥0

∑
β∈H+2 (X,Z)

1

(β ⋅E − 1)[Rg,(β⋅E−1)(X̂(logπ∗E −C), π∗β −C)

−
g−1
∑
i=0
Ri,(1,β⋅E−1)(X(logE), β)N(g − i,1)]h̵2gQβ

(6.8)

By the g > 0 log-local correspondence of [BFGW] or Theorem 25, Equation 6.8 becomes,

∑
g≥0

∑
β∈H+2 (X,Z)

Rtrop
g,(β⋅E−1,1)(X,β)h̵

2gQβ =∑
g≥0

∑
β∈H+2 (X,Z)

[(−1)β⋅E[Ng(KX̂ , π
∗β −C)

−∑
n≥0

∑
g=h+g1+...+gn,

a=(a1,...,an)∈Zn
≥0,

π∗β−C=dE[E]+β1+...+βn,
dE≥0,βj ⋅D>0

(−1)g−1+(E⋅E)dE(E ⋅E)m
m!∣Aut(a, g)∣ Nh,(a,1m)(E,dE)

n

∏
j=1
((−1)βj ⋅E(βj ⋅E)Rgj ,(βj ⋅E)(X̂, βj)]

− 1

(β ⋅E − 1)
g−1
∑
i=0
Ri,(1,β⋅E−1)(X(logE), β)N(g − i,1)]h̵2gQβ

(6.9)



154

Define ∆ol to be the term,

∆ol ∶= ∑
β∈H+2 (X,Z)

∑
g≥0
[(−1)β⋅E[∑

n≥0
∑

g=h+g1+...+gn,
a=(a1,...,an)∈Zn

≥0,

π∗β−C=dE[E]+β1+...+βn,
dE≥0,βj ⋅D>0

(−1)g−1+(E⋅E)dE(E ⋅E)m
m!∣Aut(a, g)∣ Nh,(a,1m)(E,dE)

n

∏
j=1
((−1)βj ⋅E(βj ⋅E)Rgj ,(βj ⋅E)(X̂, βj)]

− 1

(β ⋅E − 1)
g−1
∑
i=0
Ri,(1,β⋅E−1)(X(logE), β)N(g − i,1)]h̵2gQβ

(6.10)

For g ≥ 0 and β ∈H+2 (X,Z), define,

∆ol(g, β) ∶= (−1)β⋅E[∑
n≥0

∑
g=h+g1+...+gn,

a=(a1,...,an)∈Zn
≥0,

π∗β−C=dE[E]+β1+...+βn,
dE≥0,βj ⋅D>0

(−1)g−1+(E⋅E)dE(E ⋅E)m
m!∣Aut(a, g)∣ Nh,(a,1m)(E,dE)

n

∏
j=1
((−1)βj ⋅E(βj ⋅E)Rgj ,(βj ⋅E)(X̂, βj)]

− 1

(β ⋅E − 1)
g−1
∑
i=0
Ri,2(X(logE), β)N(g − i,1)

(6.11)

Hence, we have,

∆ol =∑
g≥0

∑
β∈H+2 (X,Z)

∆ol(g, β)h̵2gQβ

Therefore, Equation 6.9 becomes,
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∑
g≥0

∑
β∈H+2 (X,Z)

Rtrop
g,(β⋅E−1,1)(X,β)h̵

2gQβ = ∑
β∈H+2 (X,Z)

∑
g≥0
[(−1)β⋅ENg(KX̂ , π

∗β −C)h̵2gQβ] −∆ol

(6.12)

Since π∗β−C is a primitive curve class, the closed Gopakumar-Vafa formula for Calabi-

Yau threefolds takes the form,

∑
g≥0
Ng(KX̂ , π

∗β −C)h̵2g =∑
g≥0
ng(KX̂ , π

∗β −C)( ih̵

q
1
2 − q−12

)
2g−2

Using this, Equation 6.12 becomes,

∑
g≥0

∑
β∈H+2 (X,Z)

Rtrop
g,(β⋅E−1,1)(X,β)h̵

2gQβ = ∑
β∈H+2 (X,Z)

∑
g≥0

⎡⎢⎢⎢⎢⎣
(−1)β⋅Eng(KX̂ , π

∗β −C)( ih̵

q
1
2 − q−12

)
2g−2

Qβ

⎤⎥⎥⎥⎥⎦

−∆ol

(6.13)

□

Conjecture 9 in Chapter 7 takes the form,

(6.14) ng(KX̂ , π
∗β −C) = (−1)g+1nopeng (KX , β + β0,1)

Plugging this into Theorem 21 and using [Gra], we have Conjecture 6.

We now prove Theorem 22.

Proof of Theorem 22. This follows by applying Theorem 24 applied to Conjecture

6 □
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6.4. Genus 1 and 2 open-log conjecture

We give explicit formulas for Conjecture 6 in genus 1 and 2, with their proof in low

degrees and all genus by Theorem 22.

6.4.1. Genus 1

Applying Equations 6.1-6.3 in higher genus to Rtrop
1,(e−1,1)(X,β), we have,

Rtrop
1,(e−1,1)(X,β) =

1

e − 1 (R1,(e−1)(X̂, π∗β −C) −
R0,(1,e−1)(X,β)

24
)

We apply the genus 1, log-local principle (Section A.1) to R1,(e−1)(X̂, π∗β −C) to get,

N1(KX̂ , π
∗β −C) = (−1)e [Rtrop

1,(e−1,1)(X,β) +
e2 − 2e + 2
24(e − 1) R0,(1,e−1)(X,β)] + δ1(π∗β −C)

where δ1(π∗β −C) is defined in Equation 38. The g = 1, closed Gopakumar-Vafa formula

(Equation 4.4) is,

N1(KX̂ , π
∗β −C) = n1(KX̂ , π

∗β −C) + 1

12
n0(KX̂ , π

∗β −C)

Hence we have,

n1(KX̂ , π
∗β −C) + 1

12
n0(KX̂ , π

∗β −C) = (−1)e [Rtrop
1,(e−1,1)(X,β)

+ e
2 − 2e + 2
24(e − 1) R0,(1,e−1)(X,β)] + δ1(π∗β −C)
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In genus 1, Conjecture 9 takes the form,

n1(KX̂ , π
∗β −C) = n1(KX , β + β0,1)

Together with [LLW], we have that,

n1(KX , β + β0,1) −
1

12
n0(KX , β + β0,1) = (−1)e [Rtrop

1,(e−1,1)(X,β)

+ e
2 − 2e + 2
24(e − 1) R0,(1,e−1)(X,β)] + δ1(π∗β −C)

The g = 1, open multiple cover formulas (Equation 4.6) tell us that,

n0(KX , β + β0,1) = −O0(KX , β + β0,1)

n1(KX , β + β0,1) = O1(KX , β + β0,1) −
1

24
O0(KX , β + β0,1)

which suggests,

O1(KX , β + β0,1) = (−1)e [Rtrop
1,(e−1,1)(X,β) +

e2 − 2e + 2
24(e − 1) R0,(1,e−1)(X,β)]

− 1

24
n0(KX̂ , π

∗β −C) + δ1(π∗β −C)

Successively applying [Gra], [CC], and [GRZ], Section 1, Step 5, we arrive at,
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Conjecture 7 (Conjecture 1 in genus 1). We have,

O1(KX , β + β0,1) = (−1)e(e − 1)R1,(e−1,1)(X(logE), β) +
(−1)e
24
(e − 1)3R0,(e−1,1)(X,β)

+ δ1(π∗β −C)

6.4.2. Genus 2

We specialize Conjecture 6 to genus 2. Applying Equations 6.1-6.3 in genus 2, we have,

Rtrop
2,(e−1,1)(X,β) =

1

(e − 1) (R2,(e−1)(X̂, π∗β −C) −
R1,(1,e−1)

24
−
7R0,(1,e−1)

5760
)

Applying the g = 2 log-local principle (Section A.2), we have that

Rtrop
2,(e−1,1)(X,β) = (−1)

β⋅EN2(KX̂ , π
∗β −C) −∆ol(2, β)(6.15)

The g = 2, closed Gopakumar-Vafa formula (Equation 4.4) tells us that,

N2(KX̂ , π
∗β −C) = n2(KX̂ , π

∗β −C) + 1

240
n0(KX̂ , π

∗β −C)

and the g = 2, open-closed BPS conjecture (Conjecture 9) takes the form,

n2(KX̂ , π
∗β −C) = −nopen2 (KX , β + β0,1)
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Hence, we have

Rtrop
2,(e−1,1)(X,β) = (−1)

β⋅E(−nopen2 (KX , β + β0,1)

− 1

240
nopen0 (KX , β + β0,1)) −∆ol(2, β)

(6.16)

The g = 2, winding 1, open multiple cover formulas (Equation 4.6) tell us that,

−nopen2 (KX , β + β0,1) = O2(KX , β + β0,1) +
1

24
n1(KX , β + β0,1) +

7

5760
n0(KX , β + β0,1)

= O2(KX , β + β0,1) +
1

24
O1(KX , β + β0,1) −

3

5760
O0(KX , β + β0,1)

(6.17)

We plug in Conjecture 7 to Equation 6.17 to get,

−nopen2 (KX , β + β0,1) = O2(KX , β + β0,1)

+ 1

24
[(−1)e(e − 1)R1,(e−1,1)(X,β) +

(−1)e
24
(e − 1)3R0,(e−1,1)(X,β)

+ δ1(π∗β −C)] +
3

5760
(−1)e(e − 1)R0,(e−1,1)(X,β)

(6.18)

From [LLW] and [vGGR], we have the equalities,

(6.19)
−1
240

nopen0 (KX) =
1

240
N0(KX̂) =

(−1)e(e − 1)
240

R0,(e−1,1)(X)

Thus, plugging in Equations 6.18 and 6.19 into Equation 6.16 and simplifying, we have

that,
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Conjecture 8 (Conjecture 1 in genus 2).

O2(KX , β + β0,1) = (−1)e(e − 1)R2,(e−1,1)(X(logE), β)

+ 1

24
(−1)e+1(e − 1)R1,(e−1,1)(X(logE), β)

+ (−1)
e+1(10e3 − 30e2 + 57e − 37

5760
R0,(e−1,1)(X(logE), β)

− 1

24
δ1(π∗β −C) +∆ol(2, β)

6.5. Computational validity of open-log conjecture

For X = P2, we give computational validity of Conjecture 6 in low genus and various

degrees. Let H ∈ H2(P2,Z) be the hyperplane class. For an effective curve class β ∈

H+2 (P2,Z), we write β = dH for d > 0. The computational strategy is the following: we

compute higher genus two-pointed log invariants from quantized scattering diagram of

(P2,E) (see Section 3.2 for more details) and compare them with open Gromov-Witten

invariants of a single outer, AV-brane in low degrees and genus, which were computed by

the work of Graber and Zaslow in [GZ].

To compute the log invariants, recall from Definition 35 that for an effective curve

class β ∈H+2 (X,Z),

∑
h∈Tp,q(X,β,P )

mh(q) =∑
g≥0
Rtrop
g,(e−1,1)(X,β)h̵

2g

We compute Rtrop
g,(e−1,1) in the scattering diagram consistent to order t12 (Figure 3.5) using

the Sage code of Tim Gräfnitz.

The tropical/holomorphic correspondence of [Gra] (Equation 6.1) tells us that,
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Rg,(e−1,1)(X,β) = (e − 1)Rtrop
g,(e−1,1)(X,β)

Using the above relations and known numbers for open Gromov-Witten invariants, we

computationally verify Conjecture 6 in low degrees and genus.

d ∑g≥0Rtrop
g,(3d−1,1)(P2, dH)h̵2g

1 q
1
2 + q−12

2 q−2 + q−1 + 1 + q + q2

3 q9/2 + 3q7/2 + 4q5/2 + 4q3/2 + 4q1/2 + (q→ q−1)
4 q8 + 3q7 + 9q6 + 17q5 + 23q4 + 25q3 + 26q2 + 26q + 26 + (q→ q−1)

Table 6.1. The count of q-refined tropical curves in P2 up to degree d = 4.

6.5.1. Genus 1

In genus 1, recall that from Conjecture 7, we have that,

O1(KP2 , dH + β0,1) = (−1)3d(3d − 1)R1,(3d−1,1)(P2, dH) + (−1)
3d

24
(3d − 1)3R0,(3d−1,1)(P2, dH)

+ δ1(π∗dH −C)

We have the following table of genus 1 invariants, We refer to A.1.1 in Appendix A

d O1(KP2 , dH + β0,1) R1,(3d−1,1)(P2, dH) R0,(3d−1,1)(P2, dH) δ1(π∗dH −C)
1 −1

12
−1
8 1 0

2 5
24 −1 1 0

3 23
3

−92
8 4 1

4 −3313
12

−1683
11

286
11 -35

Table 6.2. Genus 1 open and log invariants for P2.

for computing δ1(π∗dH −C) for d ≤ 4.
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In degree d = 1, the open-log conjecture is,

O1(KP2 ,1,1) = −2R1,(2,1)(P2,H) − 1

3
R0,(2,1)(P2,H)

and indeed, −112 = −2 ⋅ −18 − 1
3 ⋅ 1.

In degree d = 2, the open-log conjecture is,

O1(KP2 ,2,1) = 5R1,(5,1)(P2,2H) + 125

24
R0,(5,1)(P2,2H)

and indeed, 5
24 = 5 ⋅ −1 + 125

24 ⋅ 1.

In degree d = 3, the open-log conjecture is,

O1(KP2 ,3,1) = −8R1,(8,1)(P2,3H) − 512

24
R0,(8,1)(P2,3H) + 1

and indeed, 23
3 = −8 ⋅ −928 − 512

24 ⋅ 4 + 1

In degree d = 4, the open-log conjecture is,

O1(KP2 ,4,1) = 11R1,(11,1)(P2,4H) + 1331

24
R0,(11,1)(P2,4H)

− 3R0,(3)(F1, π
∗H) − 2R0,(1)(F1,C)R0,(2)(F1, F )

and indeed, −331312 = 11 ⋅ −168311 + 1331
24 ⋅ 28611 − 3 ⋅ 9 − 2 ⋅ 1 ⋅ 4.

6.5.2. Genus 2

In genus 2, we have the following table of invariants,
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d O2(KP2 , dH + β0,1) R2,(3d−1,1)(P2, dH) ∆(2, dH)
1 −7

2880
−1
8 0

2 7
1152 −1 0

3 −149
360

−92
8 1

Table 6.3. Genus 2 open and log invariants.

The genus 2 open-log conjecture is Conjecture 8, and we have,

O2(KX , β + β0,1) = (e − 1)2R2,(e−1,1)(X,β)

+ 1

24
(−1)e+1(e − 1)R1,(e−1,1)(X,β)

+ (−1)
e+1(e − 1)(10e2 − 20e + 37)

5760
R0,(e−1,1)(X,β)

− 1

24
δ1(π∗β −C) − (e − 1)∆ol(2, β)

The following equations were obtained from the form of genus 2 log-local given in

Theorem 27.

In degree d = 1, the open-log conjecture is,

O2(KP2 ,1,1) = −2R2,(2,1)(P2,H) − 1

3
R1,(2,1)(P2,H) − 112

2880
R0,(2,1)(P2,H)

and indeed, −7
2880 = −2 ⋅ 1

384 − 1
3 ⋅ −18 − 112

2880 ⋅ 1.

In degree d = 2, the open-log conjecture is,

O2(KP2 ,2,1) = 5R2,(5,1)(P2,2H) + 125

24
R1,(5,1)(P2,2H) + 4375

1152
R0,(2,1)(P2,2H)

and indeed, 7
1152 = 5 ⋅ 1760 + 125

24 ⋅ (−1) + 4375
1152 ⋅ 1.
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In degree d = 3, the open-log conjecture is,

O2(KP2 ,3,1) = −8R2,(8,1)(P2,3H) − 64

3
R1,(8,1)(P2,3H) − 114688

2880
R0,(8,1)(P2,3H) − 1

24

and indeed, −149360 = −8 ⋅ 103796 − 64
3 ⋅ −928 − 114688

2880 ⋅ 4 − 1
24 .

6.6. Quantum Theta Functions and Open Mirror Symmetry

6.6.1. A higher genus discrepancy between theta functions and mirror maps

We describe an application of Conjecture 6 and Theorem 22 to the relationship between

quantum theta functions and open mirror symmetry. Theta functions are of great interest

and first appeared in the theory of abelian varieties. In Gross-Siebert mirror symmetry,

theta functions were constructed using broken lines in the mirror toric degeneration.

Recall the definition of theta functions θq(q) for P2 given in Section 3.3.6.

When q = q = 1, the classical theta function θ1 is equivalent to the Landau-Ginzburg

superpotentialW after wall crossing to an unbounded chamber of the scattering diagram.

After a change of variables Q = −t3y3, it is proven that,

θ1 =M(Q)

where M(Q) = 1−2Q+5Q2−32Q3+ . . . is the open mirror map of an outer Aganagic-Vafa

brane [GRZ], whose coefficients are open invariants of a moment fiber in local P2.

In higher genus, we consider a replacement of M(Q) given by the generating series

(Equation 9.10 of [AKMV]),
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(6.20) f̂◻∅∅ = 1 − 2Q + 5Q2 − (32 + 9z)Q3 + (286 + 288z + 108z2 + 14z3)Q4 + . . .

where z = (q 1
2 − q−12 )2. The coefficient of zgQd is the negative of the genus g, degree d,

LMOV invariant 1 of an outer AV-brane in local P2. The subscripts of f̂◻∅∅ are Young

Tableaus for U(N)-representations attached to branes. Note that in the limit as z → 0 or

q→ 1, we recover the open mirror map M(Q).

It is natural to consider if there is an extension of [GRZ] to higher genus. To ob-

tain higher genus information, we quantize the scattering diagram with wall functions as

quantum cluster transformations (Section 3.1) and consider a quantized superpotential

W (q) by counting q-refined broken lines. We wall cross W (q) (see Section 3.2.9) to an

unbounded chamber in the quantized scattering diagram to obtain θ1(q), and ask if,

(6.21) θ1(q) = f̂◻,⋅,⋅

However, Equation 6.21 is seen to not hold by comparing invariants in low degrees, and

Conjecture 6 describes the precise discrepancy between the open vs. log/tropical invari-

ants in general degree and genus.

1In winding 1 for a single brane, the LMOV invariant is equal to the open BPS invariant nopen
g defined

in Section 4. In general, LMOV invariants are related to open BPS invariants by a linear transformation
defined by characters of symmetric group [AKMV].
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6.6.2. Quantum theta functions from periods

We outline an alternative method to obtain quantum theta functions given by the scatter-

ing diagram of (X,E) by computing quantum periods in the context of mirror symmetry

for the toric Calabi-Yau 3-fold KX .

6.6.2.1. The 4D potential for local P2. Aganagic and Vafa showed that the super-

potential W of all winding, disc invariants of AV-branes in toric Calabi-Yau-threefolds is

computed by an Abel-Jacobi type map on the mirror curve [AV],

W = ∫ ydx

Considering 4D effective theories, Lerche and Mayr derive Picard-Fuchs differential equa-

tions in both open and closed variables [LM], and compute the resulting superpotential

W (which is different from the Landau-Ginzburg potential W , or the W computed by

Aganagic-Vafa). For local P2, W is expressed as,

W = ∑
n>m≥0,n≥3m

(−1)m (n −m − 1)!
n(n − 3m)!(m!)2x

nzm

where x and z are the open and closed complex parameters, respectively. The variable z

is related to the closed symplectic parameter Q by,

Q = zeF (z) = z − 6z2 + 63z2 − 866z4 + 13899z5 − 246366z6 + . . .

The variable x is related in the open mirror map to the open and closed symplectic

parameters U and Q, respectively, by the series,



167

(6.22) x = UM(Q) = U − 2UQ + 5UQ2 − 32UQ3 + 286UQ4 − . . .

Following Aganagic-Vafa, W should be the generating function of all winding disc in-

variants. Substituting the mirror maps into W for x and z, the coefficient of UwQd is

the winding w, degree d disc invariant of an Aganagic-Vafa brane. Specializing to wind-

ing w = 1, we recover Equation 6.22. In other words, the open mirror map is also the

generating function of winding 1, disc invariants.

The function F (z) is the holomorphic part of the logarithmic solution of the closed

Picard-Fuchs equations for local P2, and G(z) is the holomorphic part of the logarithmic

solution of the equations derived in [LM]. They satisfy the relation G(z) = −13 F (z).

Remark 20. The mirror map M(Q) is also the generating function of open invari-

ants of a moment fiber. We use the fact that counts of Aganagic-Vafa branes in fram-

ing 0 agree with counts of the moment fiber. Consider the generating function F (Q) =

∑β∈NE(X) nβ+β0Qβ of disc invariants with boundary on a moment fiber in disc class β+β0.

Inverting the closed mirror map z = z(Q) and writing Q = Q(z), the series F (Q(z)) is a

solution to the open Picard-Fuchs equations of [LM]. This implies that F (Q(z)) is the

open mirror map M(Q). In [FL], the open invariants of a moment fiber are shown to

equal the open invariants of the AV-brane.

6.6.2.2. Quantum periods of mirror curves. The mirror of a toric Calabi-Yau three-

fold is described by the affine equation,
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uv = p(x, y) ⊂ (C∗)4

where the algebraic variety p(x, y) = 0 ⊂ (C∗)2 is called the mirror curve. Let X = ex and

Y = ey. By the quantum mirror curve p̂(X,Y ), we mean the ideal generated by p(X,Y )

in the quantum torus [X,Y ] = h̵. In the Weyl representation, X and Y act on functions

on the quantum torus by multiplication and translation, i.e. (X ⋅ f)(X) = Xf(X) and

(Y ⋅ f)(X) = f(qX). A wavefunction Ψ is a state in the Hilbert space obtained from

quantization of the moduli space of complex structures. A wavefunction Ψ(X) is by

definition a function on the quantum torus that satisfies p̂(X,Y )Ψ = 0. For example, the

mirror family of genus 1, hyperelliptic curves for local P2 is given by the equation,

p(x, y) = 1 − x − y − z

xy

where z is a complex modulus of the curve. The quantum mirror curve for local P2 is,

p̂(X,Y ) = 1 −X − Y − q 1
2 zX−1Y −1

By WKB approximation, we have Ψ ∼ exp(W /h̵), which to leading order is the 4D

superpotential W . The wavefunction contains higher genus information from the A-

model. As a result of computational validity of Conjecture 6, wavefunctions defined by

log/tropical invariants do not agree with those defined by open invariants.

From [ACDKV], the quantum A-periods a(z,q) of the mirror curve are defined as

the residue,
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(6.23) a(z,q) ∶= res( 1
X

log
Ψ(qX)
Ψ(X) )

These are computed by using the condition p̂(X,Y )Ψ(X) = 0 and solving a difference

equation obtained from the mirror curve. Using a(z,q) to define quantum periods and

hence a quantized mirror map, we observed that the resulting coefficients match the two-

legged tropical invariants Rtrop
(e−1,1)(P2, β,q).

6.6.3. Periods from Mirror Symmetry for Fano manifolds

We briefly outline mirror symmetry for Fano manifolds X as described in [CCGGK],

which relates certain descendant Gromov-Witten invariants ofX to periods of the Landau-

Ginzburg superpotential on the mirror space. The potential is given by a Laurent poly-

nomial f ∶ (C∗)n → C. The classical A-period πf(t) of f is defined as,

πf(t) ∶=
1

(2πi)n ∫∣xi∣=1
1

1 − tf
dx1
x1
∧ . . . ∧ dxn

xn

By the residue theorem, we can write,

πf(t) =
∞
∑
m=0

cmt
m

with cm defined as the constant coefficient of fm. The periods πf form a basis of the

solutions for Picard-Fuchs differential equations.

Example 23. Let X = P2. The Landau-Ginzburg potential is given by f(x, y) =

x + y + x−1y−1. The periods of f are solutions to the differential equation,
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[D2 − 27t3(D + 1)(D + 2)]πf = 0

where D = t ddt . This implies that the coefficients of πf(t) satisfy the recursion relation,

m2c3m − 3(3m − 1)(3m − 2)c3m−3 = 0

Therefore, πf(t) = ∑m≥0 (3m)!(m!)3 t
3m.

To define the quantum periods of a Fano manifold, we consider its descendant Gromov-

Witten invariants. Let M0,1(X,β)m be the moduli space of genus 0 stable maps f ∶

(C,x) → X with 1 marked point to X such that c1(β) = m. The quantum period GX(t)

is defined as,

(6.24) GX(t) ∶= ∑
m≥0

pmt
m

with p0 ∶= 1, p1 ∶= 0, and pm ∶= ∫[M0,1(X,β)m]vir ψ
m−2ev∗[pt], where ψ is the first Chern class

of the cotangent line at the marked point x, and [pt] ∈ H4(X) is the Poincaré dual of a

point. Mirror symmetry for Fano manifolds can be defined as X is mirror to f if we have,

πf(t) = GX(t)

up to renormalization constants (see Definition 4.9, [CCGGK]).
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6.6.4. [GRZZ]

In work in progress [GRZZ], we give a proof that the quantum A-period in Equation 6.23

agrees with the quantum Gromov-Witten period in Equation 6.24, by considering higher

valency tropical curves. We also consider open-log correspondences in higher winding.
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CHAPTER 7

Open-closed BPS conjecture for toric Calabi-Yau threefolds,

with results for local P2

In this chapter, we conjecture an equality of BPS invariants for open and closed

Gromov-Witten invariants of toric Calabi-Yau threefolds. For local P2, we use the topo-

logical vertex and its refined version to prove the conjecture in low degrees and all genus.

For local P2, the calculation will demonstrate that the genus g, one-holed, open BPS

invariants with boundary on an Aganagic-Vafa brane are equal to certain genus g, closed

BPS invariants of local F1.

7.1. Introduction

Recall that X is a toric Fano surface with a smooth anticanonical divisor E, and

π ∶ X̂ → X is a toric blow up with exceptional curve C. Let KX and KX̂ be the local

Calabi-Yau geometries given by the canonical bundles of X and X̂.

Let β ∈ H+2 (X,Z) be an effective curve class. Let Ng,0(KX̂ , π
∗β − C) be the genus g

Gromov-Witten invariant of KX̂ with no insertions in class π∗β − C. Since π∗β − C is a

primitive curve class, the Gopakumar-Vafa formula takes the form,

∑
g≥0
Ng(KX̂ , π

∗β −C)h̵2g−2 =∑
g≥0
ng(KX̂ , π

∗β −C) (2 sin h̵
2
)
2g−2

ng(KX̂ , π
∗β −C) is the corresponding Gopakumar-Vafa invariant.
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Let Og(KX , β + β0,1) be the genus g, winding 1, framing 0 open Gromov-Witten

invariant of a single outer AV-brane in KX in curve class β+β0. A multiple cover formula

for Og(KX , β + β0,1) is given by,

∑
g≥0
Og(KX , β + β0,1)h̵2g−1 =∑

g≥0
(−1)g+1nopeng (KX , β + β0,1) (2 sin

h̵

2
)
2g−1

nopeng (KX , β + β0,1) is the corresponding open BPS invariant. We refer to Chapter 4 for

the full definition of the invariants and multiple cover formulas.

In genus 0, we have the following relations from the multiple cover formulas,

N0(KX̂ , π
∗β −C) = n0(KX̂ , π

∗β −C), O0(KX , β + β0,1) = −nopen0 (KX , β + β0,1)

Notice that Theorem 1.1 of [LLW] is equivalent to,

(7.1) n0(KX̂ , π
∗β −C) = −nopen0 (KX , β + β0,1)

In higher genus, closed BPS invariants ng(KX̂ , π
∗β−C) were first computed by localiza-

tion in [KZ] for X = P2. They can also be computed by the topological vertex [AKMV],

Gromov-Witten/Donaldson-Thomas correspondence [MNOP], or Eynard-Orantin recur-

sion and mirror symmetry [FLZ], [FRZZ]. In [HKR], the authors use integrability of the

holomorphic anomaly equation to compute closed BPS invariants of many local Calabi-

Yau geometries.

A rigorous definition of higher genus open string invariants is still elusive. Graber and

Zaslow computed higher genus open string invariants by assuming an open string virtual
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localizaiton theorem, and matched the physical predictions of Aganagic-Vafa [GZ]. Open

BPS invariants were computed by large-N duality in [AKMV].

By directly comparing invariants computed by [GZ] and [HKR], we conjecture,

Conjecture 9 (Conjecture 3). Let X be a toric del Pezzo surface, and π ∶ X̂ → X a

toric blow up with exceptional curve C. Then we have the following equality,

ng(KX̂ , π
∗β −C) = (−1)g+1nopeng (KX , β + β0,1)

where ng(KX̂ , π
∗β −C) is the genus g, closed Gopakumar-Vafa invariant of the canonical

bundle KX̂ in curve class π∗β−C, and nopeng (KX , β+β0,1) be the genus g, 1-holed, winding

1, open BPS invariant of KX with boundary on a single, outer Aganagic-Vafa brane in

framing 0 in disc class β + β0 ∈H2(KX , L).

Notice that Conjecture 9 seeks to extend the g = 0, open-closed result of [LLW]

(Equation 7.1).

In Section 7.3, assuming a mathematical validity of higher genus open string invariants,

we use the topological vertex to show the following,

Theorem 24 (Theorem 6). Conjecture 9 is true for X = P2 in curve classes β = dH

for d = 1,2,3,4 and in all genus.

7.2. Preliminaries of the Topological Vertex

The topological vertex of [AKMV] computes all genus topological string amplitudes

for toric Calabi-Yau threefolds by leveraging large N duality between topological string

theory and Chern-Simons theory.
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The work of [LLLZ] puts the topological vertex on a rigorous mathematical footing.

The 1-leg topological vertex was proven to be correct in [LLZ1], [OP2]. The 2-leg vertex

was proven in [LLZ2]. In [MOOP], they prove the full 3-leg vertex is correct. Thus, the

ensuing computations provide a valid proof for Conjecture 9 in the degrees calculated.

In degree 1, we prove the conjecture by directly computing partitions functions with the

topological vertex. In degree 2, 3, 4, we use computations from the refined topological

vertex [IKV].

7.2.1. Definitions

We describe some formalism of the topological vertex. We refer to [Kon], [LLLZ],

[AMV], [AKMV] for more details.

A partition is a non-increasing sequence λ = (λ1, λ2, . . .) of non-negative integers con-

taining only finitely many nonzero terms. Recall that representations R of U(N) are

labelled by Young tableaus, which is simply a partition λ with λi boxes in the i-th row.

We write λR for the Young tableau associated to a representation R. We will talk about

a representation R and its Young tableau λR interchangeably. The transpose Young dia-

gram λT has λi boxes in the i-th column, and we write λTi as the number of boxes in the

i-th row of λT . Define the length ℓ(λ) to be the number of nonzero λi. Let ∣λ∣ = ∑i λi be

the weight of λ. Define the quantity,

κλ ∶=∑
i

λi(λi − 2i + 1)

We write ∅ for the empty Young Tableau.
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Next, we define Schur functions in terms of the elementary symmetric functions. For

a sequence of variables x = (x1, x2, . . .), recall that the elementary symmetric functions

ei(x), i ≥ 0 are defined by the product,

∞
∑
i=0
ei(x)zi ∶=

∞
∏
i=0
(1 + xiz)

Given a partition λ, the Schur function sλ(x) is given by,

sλ(x) ∶= det(eλTi −i+j(x))1≤i,j≤∣λ∣

This is known as the Jacobi-Trudi formula for Schur functions.

Given two partitions µ ⊂ λ, i.e µi ≤ λi for all i, we similarly define the skew Schur

function sλ/µ(x) as,

sλ/µ(x) ∶= det(eλTi −µTj −i+j(x))1≤i,j≤∣λ∣

When µ = ∅, we recover the usual Schur function sλ(x).

We use q as a formal variable. Let λ be a partition. We define two infinite sequences,

qρ ∶= (q−i+ 1
2 )i≥1, qλ+ρ ∶= (qλi−i+ 1

2 )i≥1

Given three partitions λ,µ, ν, we define the topological vertex C(λ,µ, ν) as,

C(λ,µ, ν) = q(κλ+κν)/2sνT (qρ)∑
η

sλT /η(qν+ρ)sµ/η(qν
T+ρ)

The arguments of the topological vertex are Z/3-symmetric, i.e.
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C(λ,µ, ν) = C(ν, λ, µ) = C(µ, ν, λ)

We recall from Section 6.6, Equation 6.20 the generating series (and setting y = Q),

(7.2) f̂◻∅∅ = 1 − 2y + 5y2 − (32 + 9z)y3 + (286 + 288z + 108z2 + 14z3)y4 − . . .

with z = (q 1
2 − q−12 )2 and y = e−t. The coefficient of zgyd is the negative of the genus g,

degree d, 1-holed, open BPS invariant of local P2 in winding 1. We refer to [AKMV],

Section 7.3 for the procedure to obtain f̂ from the topological vertex partition function.

7.3. Proof of Theorem 6

Let X = P2 and X̂ = F1. We use the topological vertex [AKMV] and its refined

version [IKV] to verify Conjecture 9 for the curve class β = dH for d = 1,2,3,4 and for

all g ≥ 0.

7.3.1. Degree 1

We calculate the partition functions of local P2 and local F1 using the topological vertex.

7.3.1.1. Closed free energy of Local F1. Recall that the Kähler cone of F1 is given

by B and F , where B2 = −1,B ⋅F = 1, and F 2 = 0. We will write H ∶= B+F which satisfies

H2 = 1. We denote t1 and t2 to be the Kähler parameters corresponding to the area of B

and F , respectively. In degree 1, the curve class is given by F =H −B. The anticanonical

class of F1 is given by 2F +B +H.
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R2

R3R1

R4

Figure 7.1. The toric diagram of local F1 with representations R1 and R3

attached to the two fibers F , R2 attached to H, R4 attached to B, and no
representations attached to external legs.

We label each bounded edge with a representation Ri, and each unbounded edge

with the trivial representation, as we do not consider any D-branes. We attach two

representations R1 and R3 to the edges corresponding to the class F , the representation

R2 to the edge for H, and representation R4 to the edge for B. We traverse the toric

graph in a counterclockwise direction. We sum over Young tableau λi of Ri. The partition

function ZKF1
for local F1 is given by,

ZKF1
= ∑
λ1,λ2,λ3,λ4

(−1)∑i ∣λi∣e−(∣λ1∣+∣λ3∣)t2e−∣λ4∣t1e−∣λ2∣(t1+t2)q∑i κλiC∅λ1λT4 C∅λ2λT1 C∅λ3λT2 C∅λ4λT3

= ∑
λ1,λ2,λ3,λ4

(−1)∑i ∣λi∣e−(∣λ4∣+∣λ2∣)t1e−(∣λ1∣+∣λ3∣+∣λ2∣)t2q∑i κλiC∅λ1λT4 C∅λ2λT1 C∅λ3λT2 C∅λ4λT3

We take the logarithm of ZF1 to obtain the free energy FF1 encoding the BPS degen-

eracies. Hence, we write,
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FKF1
= logZKF1

= log
⎛
⎜⎜
⎝
1 +

∞
∑

ℓ1,ℓ2=0,
ℓ1+ℓ2≠0

aℓ1,ℓ2(q)e−ℓ1t1−ℓ2t2
⎞
⎟⎟
⎠

=
∞
∑
k=1
(−1)k+1

[∑∞ℓ1,ℓ2=0,
ℓ1+ℓ2≠0

aℓ1,ℓ2(q)e−ℓ1t1−ℓ2t2]
k

k

=
∞
∑

ℓ1,ℓ2=0,
ℓ1+ℓ2≠0

a
(c)
ℓ1,ℓ2
(q)e−ℓ1t1−ℓ2t2

where aℓ1,ℓ2(q) and a
(c)
ℓ1,ℓ2
(q) are functions defined by taking the logarithm. The coefficients

a
(c)
ℓ1,ℓ2
(q) encode the Gromov-Witten invariants.

In degree 1 or (ℓ1, ℓ2) = (0,1), we find the invariants given by a
(c)
(0,1)(q). This implies

that λ2 = λ4 = ∅, and two contributions corresponding to λ1 = ◻ and λ2 = λ3 = λ4 = ∅, or

λ3 = ◻ and λ1 = λ2 = λ4 = ∅. Thus,

a
(c)
0,1(q) = −2C2

◻∅∅ =
−2

(q 1
2 − q −12 )2

(see [AKMV], pg. 53 for a list of formulas for the vertex functions). By the closed

Gopakumar-Vafa formula (Equation 4.4), this implies that,

(7.3) n0(KF1 , F ) = −2, ng(KF1 , F ) = 0 for g > 0

7.3.1.2. Open free energy of local P2. We consider a single outer Aganagic-Vafa

brane in local P2, and we attach the representation Q = ◻ to it. The toric diagram of

local P2 is,
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◻

R2

R3

R1

Figure 7.2. The toric diagram of local P2, with representations Ri attached
to the edges corresponding to the hyperplane class H ∈ H2(P2,Z), and a
representation ◻ attached a single external D-brane.

The open partition function is given by,

ZKP2
(V ) = ∑

λ1,λ2,λ3

(−1)∑i ∣λi∣e−∑i ∣λi∣tq∑i κλiC◻λ2λT3 C∅λ1λT2 C∅λ3λT1 Tr◻V

(see [AKMV], Equation 9.9). Here the input V is a holonomy corresponding to a U(N)

matrix, and Tr◻V means the trace of V in the U(N)-representation ◻. The value of

Tr◻V is the open symplectic parameter of the brane.

We find the partition function in degree 1, i.e. when∑i ∣λi∣ = 1. There are 3 possibilities,

corresponding to,

(1) λ1 = ◻, λ2 = λ3 = ∅

(2) λ2 = ◻, λ1 = λ3 = ∅

(3) λ3 = ◻, λ1 = λ2 = ∅

In case 1), the contribution to ZKP2
(V ) is,

−e−tC3
◻∅∅ =

−e−t

(q 1
2 − q −12 )3
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In case 2), the contribution is,

−e−tC◻◻∅C◻∅∅ = −e−t
q2 − q + 1

(q − 1)2(q 1
2 − q −12 )

(see [AKMV], pg. 53 for a list of formulas for the vertex functions). The total contribu-

tion is,

A ∶= −e−t [ 1

(q 1
2 − q −12 )3

+ 2(q2 − q + 1)
(q − 1)2(q 1

2 − q −12 )
] = −e−t [ 2

q
1
2 − q −12

+ 3

(q 1
2 − q −12 )3

]

Following [AKMV], Section 7.3, we consider (q 1
2 −q −12 )A in the case of winding 1 and

a single AV-brane.

To find the open BPS invariants, we want to obtain the open free energy ”properly

understood” (see the paragraph right below Equation (9.9) of [AKMV]). In other words,

we subtract by the closed free energy logZP2 of local P2, and find the quantity.

logZKP2
(V ) − logZP2

But, the q-coefficient of −e−t in logZP2 is precisely 3

(q
1
2 −q

−1
2 )

2 (see [AMV], Equation 7.42).

Multiplying by -1 to obtain open BPS invariants (see Equation 7.2, or Equation 6.20),

we have computed that,

(7.4) n0(KP2 ,H + β0,1) = 2, ng(KP2 ,H + β0,1) = 0 for g > 0
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where H ∈ H2(P2,Z) is the hyperplane class, and β0 ∈ H2(KP2 , L) is a holormophic disc

class.

Thus, it is clear from comparing Equations 7.3 and 7.4 that Conjecture 9 holds in

degree 1 for P2.

7.3.2. Degrees 2, 3, and 4

In degrees 2,3, and 4, we use formalism from the refined topological vertex [IKV].

7.3.2.1. Context. M-theory compactification on a toric Calabi-Yau threefold X gives

a certain gauge theory that is a function of two equivariant parameters ϵ1 and ϵ2. In the

limit ϵ1 = −ϵ2, the compactified theory reduces to A-model topological string theory on

X which is computed by the topological vertex [AKMV]. The refined topological vertex

is concerned in the setting when ϵ1 ≠ −ϵ2. The refined vertex introduces an additional

parameter t into the vertex functions CR1R2,R3(q, t). The refined vertex is only applicable

to geometries that give rise to gauge theories, hence the refined partition function can be

found for local F1, but not local P2.

Particles are represented by irreducible representations of SO(4) ≅ SU(2)L ×SU(2)R,

which are labelled by their right and left spin jL and jR respectively. For a given charge

Q ∈ H2(X,Z), the D-brane moduli space can be described as the moduli space M of

stable sheaves F on X with c1(F ) = Q. The BPS degeneracies of particles in charge Q are

given by cohomology classes ofM. From an M2-brane wrapped on a holomorphic curve

C, the refined partition function computes,

∑
jL,jR

N
(jL,jR)
C (jL, jR)
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where N
(jL,jR)
C is the number of BPS states from an M2-brane wrapped on C with left-

right spin content (jL, jR), or the number of cohomology classes with spin (jL, jR) of the

moduli space of the D-brane.

7.3.3. Refined vertex computations

We extract the spin content in degrees d = 2,3,4 from the refined partition function on

local F1.

Given a tuple of left and right spins (jL, jR), denote VjL ⊗VjR to be the corresponding

SU(2)L × SU(2)R-representation.

Definition 37. For a representation Vs of spin s ∈ 1
2Z, we define its q-content qVs to

be the quantity,

qVs ∶= q−2s + q−2s+2 + . . . + q2s−2 + q2s

To compare with computations from the topological vertex, we ignore the right spin

in finding the q-content. Hence, we define the total q-content of VjL ⊗ VjR to be,

qVjL⊗VjR ∶= (q
−2jL + q−2jL+2 + . . . + q2jL−2 + q2jL)dimVjR

Since a vector space Vs of spin s ∈ 1
2Z has dimension 2s + 1, the above becomes,

qVjL⊗VjR = (q
−2jL + q−2jL+2 + . . . + q2jL−2 + q2jL)(2jR + 1)

Given a charge C ∈H2(F1,Z), we write qC to be the total spin content of BPS degeneracies

in charge C.
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We show that up to a change of sign, the q-content calculated from local F1 matches

the coefficients of f̂◻∅∅. We first calculate the q-content in the various degrees.

7.3.3.1. Degree 2. Take the charge B + 2F ∈ H2(F1,Z). The spin content is (0,2),

with corresponding representation V0 ⊗V2. Therefore, qV0⊗V2 = 5. Notice this matches the

coefficient of y2 in f̂◻∅∅.

7.3.3.2. Degree 3. Take the charge 2B + 3F ∈ H2(F1,Z), which is a curve of genus 1.

The spin content is,

(1
2
,4)⊕ (0, 7

2
)⊕ (0, 5

2
)

with corresponding representation,

V2B+3F ∶= (V 1
2
⊗C9)⊕ (V0 ⊗C8)⊕ (V0 ⊗C6)

Its q-content is given by,

qV2B+3F = 9(q−1 + q) + 14

Notice that 32+9z = 9(q−1+q)+14, with z = (q 1
2 −q−12 )2, and hence matches the coefficient

of y3 in f̂◻∅∅.

7.3.3.3. Degree 4. Take the charge 3B + 4F. The spin content 1 is given by,

(3
2
,
13

2
)⊕(1,6)⊕(1,5)⊕2(1

2
,
11

2
)⊕(0,6)⊕2(1

2
,
9

2
)⊕(0,5)⊕(1

2
,
7

2
)⊕2(0,4)⊕(0,3)⊕(0,2)

1In [IKV], the coefficient of (0,4) in the spin content is 1 instead of 2. We think that the coefficient is
in fact 2, in order to recover in the limit q → 1 the genus 0 BPS invariant of local F1 in class 3B + 4F ,
which is 286, computed in [LLW], [CKYZ], [AKMV].



185

with corresponding representation,

(V 3
2
⊗C14)⊕ (V1 ⊗C13)⊕ (V1 ⊗C11)⊕ (V 1

2
⊗C12)⊕ (V 1

2
⊗C12)⊕ (V0 ⊗C13)

⊕ (V 1
2
⊗C10)⊕ (V 1

2
⊗C10)⊕ (V0 ⊗C11)⊕ (V 1

2
⊗C8)⊕ 2 (V0 ⊗C9)⊕ (V0 ⊗C7)⊕ (V0 ⊗C5)

Its q-content is given by,

14q
V

3
2
+ 13qV 1 + 11qV 1 + 24q

V
1
2
+ 13 + 20q

V
1
2
+ 11 + 8q

V
1
2
+ 30

When setting q = 1, the above sum is 286. One can check with Sage that the q-content

is equal to 286+ 288z + 108z2 + 14z3, with z = (q 1
2 −q−12 )2. This matches the coefficient of

y4 in f̂◻∅∅.

Now, define the generating series,

TF1 ∶=∑
d≥0

q(d−1)B+dFy
d

where we define q−B ∶= 1 and qF = 2, the latter number in accordance with the genus 0,

Gromov-Witten invariant of local F1 in the class F . Express TF1 in terms of z,

TF1(z, y) =∑
d≥0
ad(z)yd

where each ad(z) is a linear combination of non-negative powers of z. We change sign

y → −y to have agreement of TF1(z,−y) and f̂◻∅∅(z, y) in degrees d ≤ 4.
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In order to obtain the BPS invariants from TF1(z,−y), we make the variable change

z → −z. The topological vertex tells us that the coefficient of zgyd in TF1(−z,−y) is

ng(KF1 , (d− 1)B + dF ), or the genus g, Gopakumar-Vafa invariant in class (d− 1)B + dF .

Indeed, the first few terms are,

(7.5) TF1(−z,−y) = 1 − 2y + 5y2 − (32 − 9z)y3 + (286 − 288z + 108z2 − 14z3)y4 − . . .

which agrees with calculations in [HKR], Appendix B.

Remark 21. There is a conceptual reason for the variable change z → −z. Recall

that the expression (2 sin h̵
2)2g−2 = (q

1
2 − q−12 )2g−2 = zg−1 appears in the Gopakumar-Vafa

formula. The sign change z → −z multiplies the coefficients there by (−1)g−1. After this

sign change, we obtain the closed BPS invariants (see Equation 7.37 of [AMV]).

In particular, the expression for TF1(−z,−y) implies that,

ng(KF1 ,B + 2F ) = 0, for g > 0

ng(KF1 ,2B + 3F ) = 0, for g > 1

ng(KF1 ,3B + 4F ) = 0, for g > 3

Thus, we have,

Proof of Theorem 24. This follows from the comparison of ng(KF1 , (d−1)B+dF )

for d ≤ 4 in Equation 7.5 with the open BPS invariants in −f̂◻∅∅ given by the negative of

Equation 7.2. □
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APPENDIX A

The g > 0 log-local principle

We provide a short summary of the higher genus log-local principle of [BFGW] and

specialize it to genus 1 and 2.

Let X be a del Pezzo surface and E a smooth anticanonical divisor. By the adjunction

formula, E is an elliptic curve. 1, The g > 0 log-local principle expresses genus g, maximal

tangency, relative Gromov-Witten invariants with λg-insertion of X(logE) in terms of

local Gromov-Witten invariants of KX and the stationary Gromov-Witten theory of E.

Theorem 25 (g > 0 log-local principle of [BFGW]). For every g ≥ 0, we have that,

FKX
g = (−1)gFX(logE)

g +∑
n≥0

∑
g=h+g1+...+gn,

a=(a1,...,an)∈Zn
≥0

(aj ,gj)≠(0,0),∑n
j=1 aj=2h−2

(−1)h−1FE
h,a

∣Aut(a,g)∣
n

∏
j=1
(−1)gj−1Daj+2F

X/E
gj

We refer to [BFGW] for the general definitions of the generating series of local in-

variants FKX
g , the generating series of relative invariants F

X/E
g , and the generating series

of elliptic curve invariants FE
h,a. The proof uses the relative virtual localization theorem

of [GV] to compute certain invariants arising from the degeneration formula.

1The g > 0 log-local principle applies more generally to X a smooth projective variety and D a smooth
nef divisor.



203

Remark 22. Since E is smooth, the relative and log Gromov-Witten invariants of

(X,E) agree, and henceforth we will speak of them interchangeably. We will use the

definition of log/relative invariants from Section 2.6.

In practice, we will use the following form of Theorem 25,

Corollary 4. On the level of individual invariants, for a curve class β satisfying

β ⋅E > 0, the theorem states that,

Ng(KX , β) =
(−1)β⋅E−1
β ⋅E Rg(X(logE), β) +∑

n≥0
∑

g=h+g1+...+gn,
a=(a1,...,an)∈Zn

≥0,

β=dE[E]+β1+...+βn,
dE≥0,βj ⋅D>0

[(−1)
g−1+(E⋅E)dE(E ⋅E)m
m!∣Aut(a, g)∣

Nh,(a,1m)(E,dE)
n

∏
j=1
((−1)βj ⋅E(βj ⋅E)Rgj ,(βj ⋅E)(X,βj))]

where m ∶= 2g − 2 −∑j aj, and ∣Aut(a, g)∣ = ∣Aut(a1, g1)∣ . . . ∣Aut(an, gn)∣ with ∣Aut(ai, gi)∣

being the number of partitions of ai into gi boxes.

In Corollary 4, the stationary invariantsNh,(a,1m)(E,dE) of the elliptic curve for a ∈ Zn≥0

are defined as,

Nh,(a,1m)(E,dE) ∶= ∫
[Mh,n+m(E,dE)]vir

n

∏
i=1
ev∗i [pt]ψaii

m

∏
j=1
ev∗j [pt]ψj

where ψj ∈ H2(Mh,n+m(E,dE)) is the ψ−insertion at the j-th marked point, and [pt] ∈

H2(E) is the Poincare-dual of a point.
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A.1. Genus 1

In genus 1, the generating series are given by,

FKX
1 ∶= (

1 − δ(E⋅E),0χ(X)
(E ⋅E)24 − 1

24
) logQE + ∑

β∣β⋅E>0
N1(KX , β)Qβ

F
X/E
1 ∶= −

1 − δ(E⋅E),0χ(X)
(E ⋅E)24 logQE + ∑

β∣β⋅E>0

(−1)β⋅E
β ⋅E R1(X(logD), β)Qβ

FE
1,0n ∶= δn,0

−1
24

log ((−1)E⋅EQ̃) +∑
d≥0
Q̃d∫

[M1,n(E,d)]vir

n

∏
i=1
ev∗i ([pt])

Remark 23. The closed string symplectic parameter Q keeps track of effective curve

classes β ∈ H+2 (X,Z). It is related by mirror symmetry to the closed string complex

parameter q on the stringy Kähler moduli space associated to KX . The variable Q̃ = Q̃(q)

is related to Q by the change of variables,

(A.1)

Q̃ = (−1)E⋅EQE exp
⎛
⎝ ∑β∣β⋅E>0

(−1)β⋅E(β ⋅E)R0(X(logE), β)Qβ
⎞
⎠
= (−1)E⋅E exp (−D2FKX

0 )

and can be expressed by Givental I-functions. For example, when KX is local P2, the

mirror geometry is a family of elliptic curves over a modular curve Y1(3) = {q ∈ C∣q ≠
−1
27 ,0} ∪ {∞}, and Q̃ = e

3(πi+ I12(q)

I11(q)
)
, where I11 and I12 are expressed in terms of Givental

I-functions.

In Corollary 4, when h = 1, we have,
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FKX
1 = −FX/E

1 +∑
n≥0

FE
1,0n

The virtual dimension ofM1,n(E,d) is n, hence,

FKX
1 = −FX/E

1 + FE
1,∅

where FE
1,0n ∶= − 1

24 log((−1)E⋅EQ̃)+∑d≥0 Q̃d ∫M1,0(E,d) 1. The invariants F
E
1,0n are computed

in [Dji] and are given by,

∑
d≥0
Q̃d∫

M1,0(E,d)
1 = −∑

n≥1
log(1 − Q̃n)

=∑
n≥1
∑
k≥1

Q̃nk
k

=∑
n≥1

⎛
⎝ ∑k∣n,k≥1

1

k

⎞
⎠
Q̃n

Remark 24. In Equation A.1 defining the change of variables Q̃↔ Q, the invariants

in the generating series FE
g,a may initially seem to depend on the ambient surface E ⊂X.

However, that is the case after applying the mirror map Q̃↔ Q to find the contributions

to the local invariants of X. The generating series FE
g,a viewed with Q̃ as a formal variable

does not depend on an embedding of E ⊂X.

The g = 1 log-local principle is,
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FKX
1 = −FX/E

1 − 1

24
log ((−1)E⋅EQ̃) +∑

n≥1

⎛
⎝ ∑k∣n,k≥1

1

k

⎞
⎠
Q̃n

= −FX/E
1 − 1

24
log(−1)E⋅EQE + 1

24
∑

β∣β⋅E>0
(−1)β⋅E+1(β ⋅E)R0(X(logE), β)Qβ

+∑
n≥1

⎛
⎝ ∑j∣n,j≥1

1

j

⎞
⎠
QnE exp

⎛
⎝
n ∑
β′∣β′⋅E>0

(−1)β′⋅E(β′ ⋅E)R0(X(logE), β′)Qβ′
⎞
⎠

where we changed variables Q̃↔ Q in the second equality.

Let [●]Qβ return the coefficient of Qβ for an expression ●.

Definition 38. Define,

δ1(β) ∶=
⎡⎢⎢⎢⎢⎣
∑
n≥1

⎛
⎝ ∑j∣n,j≥1

1

j

⎞
⎠
QnE exp

⎡⎢⎢⎢⎢⎣
n ∑
β′∣β′⋅E>0

(−1)β′⋅E(β′ ⋅E)R0(X(logE), β′)Qβ′
⎤⎥⎥⎥⎥⎦
− log(−1)E⋅EQE

24

⎤⎥⎥⎥⎥⎦Qβ

Thus, δ1(β) captures the contribution from the stationary theory of E to the local

invariants of KX in class β .

Theorem 26 (Genus 1 log-local principle).

N1(KX , β) =
(−1)β⋅E+1
β ⋅E R1,(β⋅E)(X,β) −

1

24
((−1)E⋅E − 1) logQE

+ 1

24
(−1)β⋅E+1(β ⋅E)R0(X(logE), β) + δ1(β)
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A.1.1. Computing δ1(π∗dH −C) when X = P2

Let β = dH ∈ H2(P2,Z) for d > 0. We specialize the genus 1 log-local principle to

the Hirzebruch surface π ∶ (F1, π∗E − C) → (P2,E), and determine the expressions for

R1,(β⋅E−1)(F1, π∗β −C). Theorem 26 gives us,

N
KF1
1,π∗β−C =

(−1)β⋅E
β ⋅E − 1R1,(β⋅E−1)(F1, π

∗β −C) + 1

24
(−1)β⋅E(β ⋅E − 1)R0,(β⋅E−1)(F1, π

∗β −C)

+ δ1(π∗β −C)

Define Ãn to be the term in δ1(π∗β −C) given by,

Ãn ∶= exp[n ∑
β′∣β′⋅(π∗E−C)>0

(−1)β′⋅(π∗E−C)(β′ ⋅ (π∗E −C))R0,(β′⋅(π∗E−C))(F1, β
′)Qβ′]

For n ≥ 1, define β̃n ∶= (π∗β −C) − nE = (d − 3n)π∗H + (n − 1)C. We will require that

β̃n ⋅ (π∗E − C) > 0, which implies 3d > 1 + 8n. Since n ≥ 1, this requires d > 3. We will

address the case d ≤ 3 separately.

Assume that d > 3. The coefficient of Qπ∗β−C in A will contribute to the log invariant

R1,(β⋅E−1)(F1, π∗β − C). Equivalently, we will look for the ways β̃n appears in Ãn for

3d > 1 + 8n.
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We have,

Ãn = [1 + n ∑
β′∣β′⋅(π∗E−C)>0

(−1)β′⋅(π∗E−C)(β′ ⋅ (π∗E −C))R0,(β′⋅(π∗E−C))(F1, β
′)Qβ′

+ n
2

2
( ∑
β′∣β′⋅(π∗E−C)>0

(−1)β′⋅(π∗E−C)(β′ ⋅ (π∗E −C))R0,(β′⋅(π∗E−C))(F1, β
′)Qβ′)2 + . . .]

Define T to be the cone of curve classes {β′∣β′ ⋅(π∗E−C) > 0}. If we write β′ = aπ∗H +

bC, then T is the cone {aπ∗H+bC ∣3a+b > 0}. Form ≥ 1, define Tm ∶= {β1+. . .+βm∣βi ∈ T}.

Notice that Tm ⊂ . . . ⊂ T 2 ⊂ T . The cone Tm contains curve classes which can be reduced

to a sum of m curve classes.

Let 1 ≤m <∞ be the highest natural number such that β̃n ∈ Tm. Clearly, β̃n ∈ T k for

all k ≤ m. Suppose that β̃n = βl1n + . . . + βlkn is one of 1 ≤ l ≤ ℓk possible decompositions of

β̃n into distinct curve classes of T k. We note that ℓk may equal ∞ (see Remark 6.2). The

contribution of this decomposition is,

( ∑
j∣n,j≥1

1

j
)n

k

k!
(
k

∏
i=1
(−1)βli

n ⋅(π∗E−C)(βlin ⋅ (π∗E −C))R0,(βli
n ⋅(π∗E−C))(F1, β

li
n))

Summing over all n ≥ 1 such that 3d > 1+8n, all cones T k, and all ℓk decompositions, this

is the total contribution from δ1(π∗dH −C), hence,

δ1(π∗dH−C) ∶= ∑
n≥1

3d>1+8n

( ∑
j∣n,j≥1

1

j
)
m

∑
k=1
(n

k

k!

lk

∑
l=1

k

∏
i=1
(−1)βli

n ⋅(π∗E−C)(βlin ⋅(π∗E−C))R0,(βli
n ⋅(π∗E−C))(F1, β

li
n))

When d = 1,2, it is clear that there will be no contribution by definition of β̃n to

R1,(3d−1)(F1, π∗dH − C), so we define δ1(π∗dH − C) = 0. When d = 3, there will be a
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contribution of +1 from the elliptic curve Qπ∗3H−C when n = 1. Thus, we define δ1(π∗3H −

C) = 1.

Let’s explicitly determine δ1(π∗4H − C). In this case, we have β̃n = π∗H. From T 1,

there will be a contribution of −3R0,(3)(F1, π∗H) to the overall Gromov-Witten invariant.

In T 2, π∗H can be decomposed as π∗H = (kπ∗H − (3k − 1)C)+ ((−k + 1)π∗H + (3k − 1)C)

or kπ∗H − (3k − 2)C + (−k + 1)π∗H + (3k − 2)C. Hence, the contribution from these

decompositions is,

−
∞
∑
k=1
[R0,(1)(F1, kπ

∗H − (3k − 1)C)R0,(2)(F1, (−k + 1)π∗H + (3k − 1)C)

+R0,(1)(F1, (−k + 1)π∗H + (3k − 2)C)R0,(2)(F1, kπ
∗H − (3k − 2)C)]

There will be no contributions from T k for k > 2. We switch to the basis C = π∗H − F

and F , where F denotes a fiber class. Explicit values for local invariants of F1 have been

computed in Table 1 of [LLW]. We see that the only terms that turn up to be nonzero

are −[R0,(1)(F1,C)R0,(2)(F1, F )+R0,(1)(F1,C)R0,(2)(F1, F )] = −2R0,(1)(F1,C)R0,(2)(F1, F )

and therefore,

∆(4) = −3R0,(3)(F1, π
∗H) − 2R0,(1)(F1,C)R0,(2)(F1, F )

Applying the genus 0 log-local principle, we have that

R0,(1)(F1,C) = N0(KF1 ,C) = 1

R0,(2)(F1, F ) = −2N0(KF1 , F ) = 4

R0,(3)(F1, π
∗H) = 3N0(KF1 , π

∗H) = 9
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Thus, ∆(4) = −35.

In conclusion, we have the following table for the maximal tangency invariants in

degrees d = 1,2,3,4.

d R1,(3d−1)(F1, π∗dH −C)

1 −2NKF1
1,β + 1

3N
KF1
0,β

2 5N
KF1
1,β − 125

24 N
KF1
0,β

3 −8NKF1
1,β − 8

3R
F1/E
0,β + 8

4 11N
KF1
1,β − 121

24 R
F1/E
0,β + 33R

F1/E
0,π∗H + 22R

F1/E
0,C R

F1/E
0,F

A.2. Genus 2

We have the following generating series of local and relative invariants in genus 2,

FKX
2 ∶= ∑

β∣β⋅E>0
NKX

2,β Q
β

F
X/E
2 ∶= ∑

β∣β⋅E>0

(−1)β⋅E+1
β ⋅E R2(X/E,β)Qβ

The operator D acts on the monoid ring of effective classes by DQβ = (β ⋅E)Qβ, and

D logQβ ∶= DQβ

Qβ = β ⋅E.

Theorem 27 (Genus 2 log-local principle).

FKX
2 = FX/E

2 + FE
1,(0)D

2F
X/E
1 + FE

2,(2)D
4F

X/E
0 − 1

2
(D3F

X/E
0 )2FE

2,(1,1)

It was shown by [OP] that the generating series FE
h,a can be expressed in terms of

Eisenstein series E2k of weight 2k, i.e.

FE
h,a ∈ Q[E2,E4,E6]
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Explicitly, we have that

FE
1,(0)(Q̃) ∶=

−E2

24

FE
2,(2)(Q̃) ∶=

1

5760
(2E4 + 5E2

2)

FE
2,(1,1)(Q̃) ∶=

−1
25920

(2E6 + 3E2E4 − 5E3
2)

where

E2k(Q̃) = 1 −
4k

B2k

∞
∑
n=1

n2k−1Q̃n
1 − Q̃n

with the Bernoulli numbers B2k defined by t
et−1 = ∑n≥0Bn

tn

n! . The E2k are quasimodular

forms of weight 2k for the modular group SL2(Z).

A.3. Evaluation of Vertex V3 in genus 1 in Chapter 5

We directly evaluate the genus-1 invariant associated to vertex V3 in the degeneration

formula,

∫
[M1,2(F1(logF ),π∗H)]vir

−λ1ev∗1([pt1])ev∗2([pt2])

where [pt1] ∈ A2(F1) is the Poincare dual of a point in the interior and [pt2] ∈ A1(P1) is

the Poincare dual of a point on a fiber class of F1. Recall that onM1,1, we have,

λ1 =
1

12
δ0

where δ0 ∈ A1(M1,1) is the class of a point. We take for representative of δ0 the point

corresponding to the nodal rational cubic, and resolve the node. The integral becomes,
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(1
2
)(−1

12
)∫
[M0,4(F1(logP1),π∗H)]vir

ev∗1([pt1])ev∗2([pt2])(ev3 × ev4)∗(D ×D)

where the 1
2 comes from the two ways of labelling the two marked points that resolve the

node. The class D ×D is the diagonal curve class in A2(F1 × F1), which is

D ×D = (1 × pt) + (pt × 1) + (π∗H × π∗H) + (C ×C)

The first two terms in D×D will contribute zero, by the Fundamental Class Axiom. The

last term will also contribute zero by the Divisor Axiom, since π∗H ⋅ C = 0. Hence, the

integral becomes

−1
24 ∫[M0,4(F1(logP1),π∗H)]vir

ev∗1([pt1])ev∗2([pt2])ev∗3(π∗H)ev∗4(π∗H)

Using the Divisor Axiom again, this is,

−1
24 ∫[M0,2(F1(logP1),π∗H)]vir

ev∗1([pt1])ev∗2([pt2])

This invariant is the number of lines through two points, and hence the above evaluates

to −124 .
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