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1. Introduction

Mirror Symmetry originates as a duality between Type IIA and Type IIB superstring

theory [4]. For certain pairs of Calabi-Yau manifolds X, X̌, it was found that Type

IIA string theory on X is equivalent to Type IIB string theory on X̌; their sigma

models induce isomorphic superconformal field theories. Such manifolds are said to be

a mirror pair. Type IIA string theory, or the A-model, relies on the Kähler structure

ω of X, and Type IIB string theory, or the B-model, relies on the complex structure

J̌ of X̌. Mirror Symmetry predicts there is a local isomorphism of the complexified

Kähler moduli space of X with the complex structure moduli space of X̌. On the level

of cohomology,

hp,q(X) = hn−p,q(X̌)

, where n is the complex dimension of X and X̌. By equating correlation functions

on the respective moduli spaces, the work of Candelas, de la Ossa, Green, and Parkes

showed that the number of rational curves on a quintic threefold can be reduced to cal-

culation of period integrals satisfying Picard-Fuchs equations on the mirror [1]. Their

results partially answered deep questions in algebraic geometry, such as the Clemens

conjecture. Since then, there has been great interest to mathematically formalize mirror

symmetry, with work of Kontsevich conjecturing mirror symmetry to be an equivalence

of derived categories [8], and Strominger, Yau, and Zaslow offering a geometric picture

with special Lagrangian torus fibrations [11]. This paper seeks to provide an exposi-

tion of some early accomplishments in mirror symmetry, namely enumerative mirror

symmetry for a generic quintic threefold in P4 and elliptic curves.
1
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2. Mathematical Preliminaries

We first mention some mathematical preliminaries. Mirror symmetry was first for-

mulated for Calabi-Yau 3-folds, due to their attractiveness to physicists as potential

candidates for supersymmetric compactification of spacetime.

Definition 2.1. A Calabi-Yau manifold is a compact Kähler manifold (X, J, g, Ω) with

trivial canonical bundle, i.e. ωX ∼= OX . Hence there exists a nonvanishing holomorphic

volume form Ω ∈ ∧n,0T ∗X.

Calabi-Yau manifolds in complex dimension 1 are elliptic curves. In complex di-

mension 2, they are K3 surfaces. In dimension 3 or greater, there are much more of

them. Since the canonical bundle is trivial, the first Chern class vanishes c1(X) = 0.

By Yau’s proof of the Calabi conjecture, there exists a unique Ricci flat metric whose

Kähler form is in the original Kähler class. Hence, the metric on X can be chosen such

that it is Ricci flat. Recall the following theorems from complex algebraic geometry.

Theorem 2.2. (Dolbeaut) Dolbeaut cohomology is isomorphic to sheaf cohomology

of the sheaf of differential forms, i.e.

Hp,q(X) ∼= Hq(X,Ωp
X)

where Ωp
X is the sheaf of holomorphic p-forms on X.

Theorem 2.3. (Hodge Decomposition) For a compact Kähler manifold X,

Hk(X,C) =
⊕
p+q=k

Hp,q(X)

Let hp,q = dim Hp,q(X). We have dim Hk(X,C) =
∑

p+q=k h
p,q.

The Hodge decomposition allows one to form the Hodge diamond, which lists the

Hodge numbers hp,q in a diamond formation. There are various symmetries of the

Hodge diamond. Complex conjugation gives Hp,q(X) = Hq,p(X), hence hp,q = hq,p.

This means the Hodge diamond is symmetric under reflection across the vertical line.

Serre duality says Hp,q(X) ∼= Hn−p,n−q(X)∗ or hp,q = hn−p,n−q. This translates to the

Hodge diamond is symmetric under counterclockwise rotation by π. Finally, the Hodge

*-operator gives the isomorphism Hp,q ∼= Hn−q,n−p, which translates to the Hodge

diamond is symmetric under reflection across the horizontal line.

Theorem 2.4. (Lefschetz Hyperplane) Let X be an n-dimensional compact, com-

plex manifold and Y ⊂ X a smooth hypersurface with [Y ] positive. Then we have the

map

Hk(X,Q) → Hk(Y,Q)

induced by inclusion is an isomorphism for k < n− 1 and an injection for k = n− 1.
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Theorem 2.5. (Bogomolov-Tian-Todorov) Let X be a compact Calabi-Yau man-

ifold with H0(X,TX) = 0, i.e. there does not exist global holomorphic vector fields on

X. Then the universal deformation of X, Def(X), is a germ of a smooth manifold with

tangent space H1(X,TX).

For quintic threefolds, this says the a tangent space in the complex moduli space has

dimension h1,2.

2.1. Variation of Hodge Structures.

Definition 2.6. A Hodge structure of weight n is a lattice HZ of finite rank with a

decomposition

H := HZ ⊗Z C =
⊕
p+q=n

Hp,q

of complex subspaces with Hp,q = Hq,p. A filtration

H = F 0 ⊇ . . . ⊇ F n

satisfying the condition H = F p ⊕ F n−p+1 is called a Hodge filtration.

An example is the n-th cohomology group Hn(X,Z) of a compact Kähler manifold.

For a family f : Ψ → S of compact Kähler manifolds, where S is a connected manifold,

we have the inverse image sheaf Rn(f∗C), which is the sheaf associated to the presheaf

U → Hn(f−1(U),C). This sheaf is a local system, and to prove this we appeal to the

following lemma

Lemma 2.7. Let f : Ψ → U be a family of complex manifolds with U contractible.

Then there is a diffeomorphism Ψ ∼= X × U , where X is diffeomorphic to any fibre of

f.

Indeed, since S is a manifold, each point has a contractible neighborhood U. Hence,

Hn(f−1(U),C) ∼= Hn(X × U,C) ∼= Hn(X,C). Then by path-connectedness of S and

compactness of the path, Rnf∗C is a local system with coefficient group Hn(X,C).

There is a correspondence between local systems E with coefficients in Cr and pairs

(F ,∇), where F is a rank r holomorphic vector bundle and ∇ is a flat connection.

Given a local system E on S, set F = E ⊗ OS. In our context f : Ψ → S, we obtain

the holomorphic vector bundle Hn = (Rnf∗C)⊗OS and a flat holomorphic connection

∇ on Hn, called the Gauss-Manin connection.

Using this connection, we may define monodromy around a singular point. Suppose

S = ∆∗, the punctured unit disc. The stalk of (Rnf∗C)s at a point can be identified with

Hn(Ψs,C). Using the connection to parallel transport around a loop γ : [0, 1] → ∆∗
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around the origin gives a linear isomorphism T : Hn(Ψs,C) → Hn(Ψs,C). This is

called the monodromy transformation.

Example 2.8. We can explicitly compute the monodromy matrix for the family of

elliptic curves. Consider the family of elliptic curves over ∆∗ with coordinate t on ∆∗

with modular parameter τ = 1
2πi

log t. Divide C ×∆∗ by the action (z, t) → (z + 1, t)

and (z, t) → (z+ 1
2πi

log t, t) to obtain a complex manifold Ψ. Though 1
2πi

log t is multi-

valued, the lattice spanned by 1 and 1
2πi

log t will be well-defined. This gives us a family

f : Ψ → ∆∗ of elliptic curves.

Fix a point t0 ∈ ∆∗ and consider the monodromy transformation T : H1(Et0 ,C) →
H1(Et0 ,C). If Et0 ∼= C/Λ, then by Poincare duality, H1(Et0 ,C) ∼= Λ, which is spanned

by 1 and τ(t0). Therefore, we determine how T acts on 1 and τ(t0). We see that T will

send 1 to itself, but because of the multivaluedness of τ , T will send τ → τ + 1. Thus,

the monodromy matrix is given by

[
1 1

0 1

]
There is a property of the Gauss-Manin connection that will be useful. We see that

each fibre of the holomorphic vector bundle Hn = Rnf∗C ⊗ OS will have a Hodge

filtration. This yields a filtration of Hn by subbundles

Hn = F0 ⊇ F1 ⊇ . . . ⊇ Fn

There is a useful relationship between the Gauss-Manin connection and the Hodge

filtration of Hn

Theorem 2.9. (Griffiths Transversality) ∇Fp ⊆ Fp−1 ⊗ Ω1
S

Proof: It suffices to show that if ωt ∈ Ωp,q(X, Jt), then
∂
∂t
ωt ∈ Ωp,q+Ωp+1,q−1+Ωp−1,q+1.

Locally, (T 1,0
Jt

)∗ is given by span{dzi(t) := dzi −
∑

j sij(t)dzj}, and

ωt =
∑

|I|=p,|J |=q

αIJ(t)dzi1(t) ∧ . . . ∧ dzip(t) ∧ dzj1(t) ∧ . . . ∧ dzjq(t)

Taking ∂
∂t
|t=0 and sij(0) = 0, we get terms such as

αIJ(0)dzi1 ∧ . . . ∧ (
∑
j

∂sik,j
∂t

dzj) ∧ . . . dzip ∧ dzj1 ∧ . . . ∧ dzjq ∈ Ωp−1,q+1

and similarly for differentiating dzjk (the terms will be in Ωp+1,q−1).

3. Mirror Symmetry for the Quintic Threefold

One of mirror symmetry’s early successes in enumerative geometry was the prediction

of the number of rational curves on a generic quintic threefold in P4. We consider the
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Fermat quintic hypersurface X ⊆ P4 defined by the zero locus of the homogeneous

polynomial,

x50 + x51 + x52 + x53 + x54 = 0

Since 0 is a regular value, X is a complex hypersurface. By the adjunction for-

mula, which states that KX
∼= OX(

∑
i di − n − 1) for a smooth complete intersection

X = D1 ∩D2 ∩ . . . ∩Dn = 0 ⊆ Pn, degDi = di, we see that X is a Calabi-Yau 3-fold.

We can compute the Hodge diamond of X. The Lefschetz Hyperplane Theorem

gives an isomorphism of Hk(X,C) with Hk(P4,C) for k ≤ 2. This implies H0(X,C) ∼=
H2(X,C) ∼= C, and H1(X,C) = 0. This means h1,0 = h0,1 = 0. Also, h2,0 = h3,1 =

h0,1 = 0, where the first equality is by Hodge *-duality. Now, h1,1 = 1 by Hodge

decomposition. It remains to find h1,2. Heuristically, by Bogomolov-Tian-Todorov, h1,2

should be the dimension of the tangent space of deformations of X, or the space of

quintic hypersurfaces. The dimension should be close to
(
5+4
4

)
= 126, since this is

the number of degree 5 homogeneous polynomials in 5 variables. One should subtract

1, since proportional polynomials give the same hypersurface, and then subtract the

dimension of PGL(5), the automorphism group of P4. This suggests h1,2 = 126 −
1 − 24 = 101, but one also needs to make sure that deformations of quintics remain

quintics, and there are no exceptional isomorphism between hypersurfaces, etc. One

can also calculate h1,2 by the Gauss-Bonnet Theorem, i.e. χ(X) = c3(TX).

3.1. A-model. The A-model is the moduli space of complexified Kähler classes of X.

The set of all Kähler classes form an open cone of H1,1(X,C), and is a real submanifold

of dimension h1,1. A complexified Kähler class is defined to be

ωC := B + iω

, where ω is a Kähler class and B ∈ H1,1(X,R) is termed the B−field in physics liter-

ature. These classes are well-defined up to translation by H2(X,Z). The complexified

Kähler moduli space is defined to be

MKäh(X) := (H2(X,R) + iKX)/H2(X,Z)

For the quintic threefold, since h1,1(X) = 1,

MKäh(X) ∼= (R+ iR>0)/Z ∼= H/Z ∼= ∆∗

, where ∆∗ is the punctured unit disk and the isomorphism is given by e2πit.

The (1, 1)-Yukawa coupling is a cubic form defined on the tangent space of MKäh(X)

⟨D1, D2, D3⟩ =
∫
X

D1 ∧D2 ∧D3 +
∑
β ̸=0

nβ

∫
β

D1

∫
β

D2

∫
β

D3

e2πi
∫
β
ω

1− e2πi
∫
β ω
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,where the sum is over β ∈ H2(X,Z). The definition of nβ is given in terms of the space

of stable maps from a genus-zero domain curve to X. The aim of this paper is not to

define the nβ rigorously or calculate them directly, but to outline a mirror calculation

which predicts them.

3.2. B-model.

3.2.1. Mirror family of quintics. To construct the mirror family of Calabi-Yau 3-folds,

we follow Greene and Plesser’s orbifold construction. Define a family of quintic 3-folds

by,

Xψ = {fψ := x50 + x51 + x52 + x53 + x54 − 5ψx0x1x2x3x4 = 0}

Then Xψ can be viewed as a family χ ⊆ P4×A1 → A1, where ψ is a coordinate on A1.

There exists an action of (Z/5Z)5 on P4 given by,

(x0, x1, x2, x3, x4) → (ζa0x0, ζ
a1x1, ζ

a2x2, ζ
a3x3, ζ

a4x4)

, where ζ is a fifth root of unity. Notice that Z/5Z embedded diagonally into (Z/5Z)5

acts as the identity. Therefore, we have an action of (Z/5Z)5/(Z/5Z). Consider the

subgroup G of (Z/5Z)5/Z/5Z given by,

G := {(a0, . . . , a4)|
∑
i

ai ≡ 0 mod 5}/Z/5

G acts on each hypersurface Xψ, and thus the Xψ descend to a family of hypersurfaces

in P4/G. Denote the quotient hypersurface by Yψ := Xψ/G. A priori, Yψ is quite sin-

gular, and we need to perform a resolution of singularities. We first analyze which of

the Xψ are singular.

The Jacobian of fψ is,

JXψ = (5x40 − 5ψx1x2x3x4, . . . , 5x
4
4 − 5ψx0x1x2x3)

If the Jacobian vanishes on all coordinates, then we have 5x5i = 5ψx0x1x2x3x4 for all

i. This implies
∏

i x
5
i = ψ5

∏
i x

5
i . Thus, either xi = 0 or ψ5 = 1. However, if xi = 0 for

some i, then xi = 0 for all i, and (x0, . . . , x4) does not represent a point in P4. Thus,

Xψ is singular at ψ5 = 1. In this case, Xψ will be singular at the points

(ζa0 , . . . , ζa4)

where
∑

i ai ≡ 0 mod 5. This gives 125 distinct singular points. Notice Xψ will also be

singular when ψ = ∞, where Xψ = x0x1x2x3x4.

The quotient Yψ is singular as well. It is singular at points x ∈ Xψ where the action

of G is not free, or where the stabilizer at x is non-trivial. A point in P4 has non-trivial
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stabilizer in G if at least two of its coordinates are 0. We see that points of the curve,

Cij = {xi = xj = 0} ∩Xψ

have stabilizer of order 5, and the points of

Pijk = {xi = xj = xk = 0} ∩Xψ

have stabilizers of order 25. The singular locus of Yψ will consist of 10 curves Cij/G ∼=
P1, with Cij/G,Cjk/G,Cik/G meeting at the point Pijk/G.

One then performs a resolution of singularities on Yψ for ψ5 ̸= 1,∞. It can be shown

there exists a resolution X̌ψ → Yψ such that X̌ψ is a Calabi-Yau 3-fold whose Hodge

numbers satisfy,

h1,1(X̌ψ) = 101, h1,2(X̌ψ) = 1

Indeed, the Hodge numbers are as proposed by mirror symmetry. Thus, we have a

family of mirror quintics X̌ψ → A1. Notice that Xψ
∼= Xζψ by the map (x0, . . . , x4) →

(ζx0, . . . , x4). Hence, we instead use the coordinate x = (5ψ)−5 on the mirror family.

Notice that the singular mirror quintics occur when x = 0, 5−5, and ∞.

3.2.2. Canonical Coordinates. The mirror map is a local isomorphism from the sym-

plectic moduli space to the complex moduli space. The local parameter on MKäh is

given by q = e2πit. The mirror map should express q in terms of the local parameter of

the complex moduli space. To do this, one finds a large complex structure limit point

(LCSL) in the family of mirror quintics to compute period integrals around. Through

the theory of Hodge structures, there will exist unique (up to sign) vanishing cycles

β0, β1 around the LCSL such that under monodromy, β0 → β0 and β1 → β1 + nβ0.

If Ω(x) is a holomorphic family of holomorphic volume forms on our family of mirror

quintics, the mirror map expresses the Kähler parameter by,

q = e
2πi

∫
β1

Ω(x)∫
β0Ω(x)

In order to express the integrals in terms of the complex moduli space coordinate x, we

use the fact that the period integrals must satisfy Picard-Fuchs differential equations.

Then, the mirror map will allow us to equate the appropriately normalized Yukawa

couplings and obtain the Gromov-Witten invariants of a generic quintic X ⊂ P4.

3.2.3. Period Integrals. We first describe a single valued solution to the Picard-Fuchs

equations. Consider the 3-cycle β0 in Xψ given by the set of points in P4 with

x4 = 1, |x0| = |x1| = |x2| = δ, and x3 given by the solution to fψ = 0 that tends to 0 as

ψ → ∞. This means the following: defined y as x3 := (ψx0x1x2)
1
4y. Then fψ = 0 with

x4 = 1 is y = y5

5
+

1+x50+x
5
1+x

5
2

5(ψx0x1x2)
5
4
. Solving for y, there are 4 solutions approaching 4th roots

of 5 as ψ → ∞, and 1 solution going to 0 like ψ−5/4. Taking the latter, x3 is well defined.
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Next, define the family of 3-forms on the open subset of Xψ given by x4 = 1,

Ω(ψ) = 5ψ
dx0 ∧ dx1 ∧ dx2

∂fψ
∂x3

= 5ψ
dx0 ∧ dx1 ∧ dx2
5x43 − 5ψx0x1x2

Apriori, this is a family of meromorphic 3-forms. However, using the implicit function

theorem, it can be shown that Ω(ψ) is actually a holomorphic 3-form on non-singular

Xψ. Since these forms are G-invariant, they descend to Yψ and extend to the resolved

hypersurfaces X̌ψ. By definition, they are the Calabi-Yau forms that are unique up to

phase.

Therefore, the period integral we want to compute is,∫
β0

dx0 ∧ dx1 ∧ dx2
x43
ψ−1 − x0x1x2

This integral is equivalent to the following integral,

1

2πi

∫
T 4

5ψ
dx0dx1dx2dx3

fψ

where T 4 = {(x0, x1, x2, x3, 1)||xi| = δ}. To see this, fixing x0, x1, x2, the above inte-

grand has poles when fψ(x0, x1, x2, x3, 1) = 0. We showed for ψ large, there was only

one such value of x3 near 0, which implies the pole is simple. Using residues,

1

2πi

∫
T 4

5ψ
dx0dx1dx2dx3

fψ
=

∫
β0

5ψ
dx0dx1dx2

∂fψ
∂x3

Thus, we compute,∫
T 4

5ψ
dx0dx1dx2dx3

fψ
=

∫
T 4

dx0dx1dx2dx3
(5ψ−1)(1 + x50 + . . .+ x53)− x0x1x2x3

=

∫
T 4

dx0dx1dx2dx3
x0x1x2x3

1

(5ψ)−1 (1+x
5
0+...+x

5
3)

x0x1x2x3
− 1

= −
∞∑
n=0

∫
T 4

dx0dx1dx2dx3
x0x1x2x3

(1 + x50 + . . . x53)
n

(5ψ)n(x0x1x2x3)n

The only terms that contribute to the residue calculation will be those in which one

can cancel out (x0x1x2x3)
n in the denominator of the second integrand. Since the

exponents in the numerator are divisible by 5, only the 5|n terms contribute,

−
∞∑
n=0

∫
T 4

dx0dx1dx2dx3
x0x1x2x3

(1 + x50 + . . . x53)
5n

(5ψ)5n(x0x1x2x3)5n
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By the binomial formula, the number of terms of the form (x0x1x2x3)
5n in the numer-

ator will be (5n)!/(n!)5. Thus, the above integral is,

−
∞∑
n=0

∫
T 4

dx0dx1dx2dx3
x0x1x2x3

(1 + x50 + . . . x53)
5n

(5ψ)5n(x0x1x2x3)5n
= −(2πi)3

∞∑
n=0

(5n)!

(5ψ)5n(n!)5

Using the complex moduli coordinate x = (5ψ)−5, we see that the period integral is

proportional to,

ϕ0(x) =
∞∑
n=0

(5n)!

(n!)5
xn

Notice an := (5n)!
(n!)5

obey the recurrence relation,

(n+ 1)5an+1 = (5n+ 1)(5n+ 2)(5n+ 3)(5n+ 4)(5n+ 5)an

which translates into a differential equation for ϕ0(x). Letting Θ := x d
dx
, ϕ0(x) satisfies

the differential equation

(Θ4 − 5x(5Θ + 1)(5Θ + 2)(5Θ + 3)(5Θ + 4))ϕ0(z) = 0

It turns out all period integrals satisfy the above equation, which is called the Picard-

Fuchs equation. To see that they must satisfy some fourth order equation, note that

H3(X̌ψ,C) is four-dimensional, hence there is a linear dependence among,

Ω(x),
∂Ω

∂x
,
∂2Ω

∂x2
,
∂3Ω

∂x3
,
∂4Ω

∂x4

To actually prove this, one may use residues and the Griffiths-Dwork method of pole

reduction to differentiate the Calabi-Yau form and determine the correct coefficients

for the differential equation.

3.3. Mirror Map. In the definition above, Ω(x) is thought of as a section of the sheaf

R3f∗C ⊗ OS, and ∇ is the induced Gauss-Manin connection given by the Riemann-

Hilbert correspondence.

In our setting, f : Ψ → ∆∗ is the family of mirror quintics. Since x = 0 refers to

the large complex structure limit point, monodromy around the point is maximally

unipotent. Therefore, there exists cycles β0, β1 ∈ H3(X̌x,Q) such that β0 → β0 and

β1 → β1 + nβ0 under monodromy. Therefore,
∫
β0
Ω(x) is single-valued and must be

proportional to ϕ0(x), ∫
β0

Ω(x) = Cϕ0(x)

while
∫
β1
Ω(x) is multi-valued and hence∫

β1

Ω(x) = D0ϕ0(x) +D1ϕ1(x)
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The above ϕ1(x) is a multi-valued solution of the Picard-Fuchs equation satisfying

ϕ1(e
2πix) = ϕ1(x) + 2πiϕ0(x). It can be written as

ϕ1(x) = ϕ0(x) log x+ ψ(x)

where ψ(x) = 5
∑∞

n=1
(5n)!
(n!)5

(
∑5n

j=n+1
1
j
)xn. Now,∫

T (β1)

Ω(x) = n

∫
β0

Ω(x) +

∫
β1

Ω(x) = (nC +D0)ϕ0 +D1ϕ1

and

D0ϕ0(e
2πix) +D1ϕ1(e

2πix) = (D0 + 2πiD1)ϕ0(x) +D1ϕ1(x)

so nC = 2πiD1. Letting n = 1, the canonical coordinate is

w =

∫
β1
Ω∫

β0
Ω

=
D0

C
+

1

2πi

ϕ1(x)

ϕ0(x)

=
1

2πi
log x+

1

2πi
log c2 +

1

2πi

ψ(x)

ϕ0(x)

So, the mirror map is

q = e2πiw = c2ze
ψ/ϕ0

3.4. (1,2)-Yukawa coupling. The (1,2)-Yukawa coupling is a cubic form defined on

the complex structure moduli space. Formally, it is

Definition 3.1. Given a family of Calabi-Yau 3-folds f : Ψ → S and a holomorphically

varying family of holomorphic three-forms on Ψ, Ω(x), the (1,2)-Yukawa coupling is

a cubic form on the tangent bundle of S. Given a local trivialization of f , f−1(U) ∼=
U ×X, let ∂

∂x1
, ∂
∂x2
, ∂
∂x3

∈ TS,x. Set

⟨ ∂

∂x1
,
∂

∂x2
,
∂

∂x3
⟩ =

∫
X

Ω(x) ∧∇ ∂
∂x1

∇ ∂
∂x2

∇ ∂
∂x3

Ω(x)

We can now use the mirror map to equate the Yukawa couplings from the A-model

and B-model. Let

Wk =

∫
X̌x

Ω(x) ∧ dk

dxk
Ω(x)

If one rewrites the Picard-Fuchs equation as

(
d4

dx4
+

3∑
k=0

Ck(x)
dk

dxk
)Ω(x) = 0

then the couplings satisfy

W4 +
3∑

k=0

CkWk = 0
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By Griffiths Transversality, W0 = W1 = W2 = 0 and d2

dx2
W2 = 2(W ′

3 − W4) + W4).

Hence, the coupling W3 that we are interested in satisfies

W ′
3 +

1

2
C3W3 = 0

Thus,

W3 =
c1

(2πi)3x3(55x− 1)

is the general solution to the above differential equation.

Now, the Yukawa couplings we want to equate need to be suitably normalized. They

are computed with respect to the following family of 3-forms

Ω(x)∫
β0
Ω(x)

Notice that if Ω(x) → f(x)Ω(x), then the Yukawa coupling scales by a factor of f(x)2.

Since we wrote the mirror map in terms of the coordinate w, by the chain rule the

(1,2)-Yukawa coupling we want to compute is,

⟨ ∂
∂w

,
∂

∂w
,
∂

∂w
⟩ = (

dx

dw
)3⟨ ∂
∂x
,
∂

∂x
,
∂

∂x
⟩

One then wants to express the above (1,2)-Yukawa coupling in terms of the Kähler

moduli coordinate q. That will be predicted to coincide with the (1,1)-Yukawa cou-

pling after suitable choice of constants. In this way, one obtains the Gromov-Witten

invariants of the quintic threefold.

4. Mirror Symmetry for the Elliptic Curve

We describe mirror symmetry on the level of Hodge numbers for elliptic curves. We

then derive the Picard Fuchs equations that the periods of the mirror must satisfy.

Elliptic curves are the only 1-dimensional Calabi-Yau manifolds. Given a lattice

Λ = z1Z ⊕ z2Z ∼= Z2 ⊆ C, an elliptic curve can be described as E ∼= C/Λ. In this

way, a complex elliptic curve is a torus. Complex multiplication by ± 1
z1

gives an iso-

morphism between the elliptic curves E = C/Λ ∼= C/Λ′ = E ′, where Λ′ = Z ⊕ τZ,
with τ = z2

z1
. Recall that PSL2(Z) is generated by the transformations τ → τ + 1

and τ → −1
τ
. Hence, the moduli space of complex structures for elliptic curves is

H/PSL2(Z), where the action is given by

τ ∈ H → aτ + b

cτ + d
,

[
a b

c d

]
∈ PSL2(Z)

For the moduli space of complexified Kähler classes, recall that the Kähler classes

form a cone of H1,1(E,R) = H2(E,R) ∩ H1,1(E). Hence, the cone is a real manifold
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of dimension h1,1 = 1. Take the generator of H1,1(E,R) to be ω∗ =
√
−1

2Im τ
dz ∧ dz =

1
Im τ

dx ∧ dy, which is a closed, real, (1, 1)-form. Then, a Kähler form is given by

ω = rω∗ with r ∈ R>0. The field B ∈ H1,1(E,R) is equal to B = r′ω∗ for some r′ ∈ R.
A complexified Kähler class is then

ωC = B + iω = r′ω∗ + irω∗ = tω∗

with t ∈ H. Therefore, the moduli space of complexified Kähler classes is H. Notice
that ∫

E

ωC =

∫
E

tω∗ =
t

Im τ

∫
E

i

2
dz ∧ dz = t

If we denote Et,τ as the elliptic curve with modular parameter τ and Kähler parameter

t, then mirror symmetry for elliptic curves is

Ěť,τ̌ = Eτ,t

4.1. Picard-Fuchs equations. The mirror family of E ∼= C/Λ is given by the elliptic

surface Ψ ⊆ P2 × P1

F (x, y, z) = t(x3 + y3 + z3)− 3xyz = 0

with t ∈ B := P1 \ {0, 1, ζ, ζ2}, and ζ a cubic root of unity. The surface is called the

Hesse pencil. Hence we have a smooth family f : E → B. A 1-cycle γ ∈ H1(Et;C) may

identified with cycles of nearby fibers. Like before, we study period integrals of the

family of holomorphic 1-forms ω(t) over cycles in the middle cohomology H1(Et;C),

π(t) =

∫
γ

ω(t)

Ratios of the periods turn out to give the modular parameter. These periods must

satisfy Picard-Fuchs equations. We outline the residue approach to derive the Picard-

Fuchs equation.

4.1.1. Residue Map. Recall from single variable complex analysis, the residue of a

meromorphic 1-form returns a number or a 0-form. We want to generalize this idea

to higher degree cohomology. Given a smooth hypersurface X ⊂ Pn, a residue map

should take a rational n-form with poles on X to a holomorphic form in Hn−1(X,C).
It is defined as follows: given an (n−1)-cycle γ ∈ Hn−1(X;C), take its tube T (γ) lying
in Pn \X. The tube locally looks like γ × S1. Consider the map

γ → 1

2πi

∫
T (γ)

ω ∈ C

This defines an element Res ω ∈ Hn−1(X;C). Identifying singular cohomology with

de Rham cohomology, this means

1

2πi

∫
T (γ)

ω =

∫
γ

Res ω
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We will now use the residue map to define the family of non-vanishing holomorphic

volume forms on Ψ. Hence, we compute the residue of the rational 2-form

ρt =
Ω

F
:=

xdy ∧ dz − ydx ∧ dz + zdx ∧ dy
t(x3 + y3 + z3)− 3xyz

We express ρt in terms of dF to make the computation explicit. Since Ψ consists of

smooth elliptic curves, at any point, at least one partial derivative of F is nonzero.

Assume in a neighborhood of a point that ∂F
∂x

̸= 0. We may write

ρt =
ydz − zdy

∂F
∂x

∧ dF

F
+

3dy ∧ dx
∂F
∂x

The second term is holomorphic, so by Cauchy’s Theorem, Res ρt =
ydz−zdy
3(tx2−yz) =

ydz−zdy
∂F
∂x

.

This gives a nonvanishing holomorphic 1-form in a neighborhood where ∂F
∂x

̸= 0. Using

a partition of unity, the global nonvanishing holomorphic 1-form takes a similar form.

Thus, ω(t) = Res ρt.

Define Ωk(t) = ( d
dt
)k(Ω

F
). It suffices to find an equation Ω2(t)+B(t)Ω1(t)+C(t)Ω0(t) ≡ 0

modulo exact forms, since we can differentiate under the integral dk

dtk
π(t) =

∫
T (γ)

Ωk(t).

We will use the following two lemmas to derive the PF-equations.

Lemma 4.1.
A ∂F
∂x

+B ∂F
∂y

+C ∂F
∂z

Fk
Ω ≡ Ω

(k−1)Fk−1 (
∂A
∂x

+ ∂B
∂y

+ ∂C
∂z
), modulo exact forms.

Thus, if the numerator of a meromorphic k−form lies in the Jacobian ideal J(F ) :=

⟨∂F
∂x
, ∂F
∂y
, ∂F
∂z
⟩, then it is equivalent modulo exact forms to a meromorphic form with a

pole of one degree lower.

Lemma 4.2. Hp,1−p(X;C) ∼= (C[x, y, z]/J(F ))3(1−p), where the subscript refers to the

natural grading. The isomorphism is given by

Res
QΩ

F 2−p ↔ Q

This lemma will be used in the following way: if Res QΩ
F 2−p = 0, then Q ∈ J(F ).

We begin with Ω2(t) =
2(x3+y3+z3)2

F 3 Ω. This is a rational form that is homogeneous of

degree 6. Using Lemma 3, Res Ω2(t) ∈ H−1,2(X;C) = 0. Therefore, the numerator lies

in J(F ). Write the numerator as a linear combination of partial derivatives of F (one

can explicitly calculate this with Gröbner bases) and use Lemma 2 to write, modulo

exact forms,

Ω2(t) ≡ (
2

t
(x3 + y3 + z3) +

6txyz

t3 − 1
+

3x3

t(t3 − 1)
)
Ω

F 2

This form has a pole of order 2 and so does Ω1(t) = −(x3+y3+z3)
F 2 Ω. Since H0,1(X;C)

is of dimension 1, ∃B(t) such that Res (Ω2(t) + B(t)Ω1(t)) = 0. Suppose this form’s
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expression is QΩ
F 2 , then Q ∈ J(F ). Explicitly,

Q =
2−Bt

t2
F +

x

t2(t3 − 1)

∂F

∂x
+

3

t
(
4t3 − 1

t(t3 − 1)
−B)xyz

Both F and ∂F
∂x

∈ J(F ). Thus, for Q ∈ J(F ), we must have B = 4t3−1
t(t3−1)

.

Similarly, we can calculate for C(t), which gives us the Picard-Fuchs equations. The

associated Picard-Fuchs differential operator is thus

d2

dt2
+

4t3 − 1

t(t3 − 1)

d

dt
− 2t

t3 − 1

Since the equation is second order, its space of solutions is two dimensional. It

is spanned by a holomorphic, single valued function π1(t) and another multivalued

function π2(t) = π1(t) log t+ ρ(t), with ρ holomorphic. We can find π1(t) using power

series. Suppose π1(t) =
∑∞

n=0 ant
n. The recurrence relation that must be satisfied by

the coefficients is

an+3(n+ 3)2 = an(n+ 2)(n+ 1)

This implies

π1(t) =
∞∑
n=0

(3n)!

33n(n!)3
t3n

Suppose α ∈ H1(Et;C) is a vanishing cycle invariant under monodromy. Then since∫
α
ω(t) is single valued, it is a multiple of π1(t).
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