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1. CHEEGER-GROMOLL SPLITTING THEOREM

There is a version of the splitting theorem for Riemannian manifolds that have a
Ricci curvature lower bound, i.e. Ricym > —(n — 1)d for 6 > 0. For intuition, suppose
Ricym > —(n — 1). If we rescale the metric to §~2g, then Ricym > —(n — 1)§2. Let
v [’TL, ’TL] — M be a geodesic segment of length L > 1. The distance is rescaled by
a factor of 671, where 0 < § << 1,1 << §'L. Now the ball Bs(7(0)) in the origi-
nal metric is rescaled to be By((0)). Thus, v now looks like a line in a noncompact
manifold with non-negative Ricci curvature, the setting in which the Cheeger-Gromoll
splitting theorem applies. This suggests M™ should split in some sense. The almost
splitting theorem says that if the Ricci curvature is ”almost nonnegative”, and one
has a ”long enough, minimizing” geodesic, then a ball Bg(p) centered at p € M is
Gromov-Hausdorff close to a ball in a product space R x X, where X can be taken to

be a length space.

For notation, let W = W(ey, ..., elcy, ..., ) denote a non-negative function such that
lim, -0V = 0 for fixed ci,...,c;. Fix two points gr € M. Define the excess
function

E(x) =d(z,qy) + d(z,q) — d(q+,q-)

E is non-negative with Lip E < 2. The excess function measure how much the segments

connecting ¢4 to x fail to be length minimizing. We will work under the following

assumptions,
(1.1) Ric > —(n — 1)4,

(1.3) E(p) <k,
1
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The second and third assumptions together suggest the existence of a ”long enough,
minimizing” geodesic. We first prove the following useful theorem due to Abresch-
Gromoll.

Theorem 1.1. (Abresch-Gromoll) Assuming (1)-(3), then

E<U(5,L7 Y eln,R) (on Br(p))

Proof: Let Wy = V(§, L~'In, R). By Laplacian comparison (Ar(z) < (n — 1)5”,*5(”)7

sn_s(r)

we have

AE <y (on Bygi1(p))

Set d(x,p) =r. Fix 0 <n < R. We can assume € is chosen to satisfy
€ < WiLp (R) < Wilp(n)

where L is the comparison function of Ch. 4 in [I]. In particular, L, (R + 1) =
0,Lyz.q <0 on[0,R+ 1] implies L, ,(R) > 0 is nonnegative. The second inequality

follows since L is monotonically decreasing. Notice that p € A, pi1(z). We see that
E(p) < e < WiLp(n) < Wip(r)

By Theorem 8.12 of [1, for all r with n <r < R, we have

(1.4) E(x) < Wi1Lgiq(n) + 27

Since Lip E < 2, for all v we have E(x) < E(p) + 2r. Since E(p) < e < Vy1Lg. ,(n),
we have

E(x) < E(p) +2r < ‘1’1£R+1(77) +2r < ‘1’1LR+1(77) +2n

Therefore, we have (4) for all r < n and hence for all r < R. If we choose ) to satisfy

\I’1LR+1(77) = 2n

(since Ly, ((n) > 0), then ¥y — 0 implies n — 0 (furthermore as n — 0, since
Ly <0 on [0, R+ 1], this means Wy — 0). Thus, the desired statement follows from
(1). O

Thus, if the excess function is sufficiently small at p € M, then it is also small in
the ball Br(p). The reason for taking ¥ = W (5, L™}, ¢|n, R) is that we will eventually
consider a sequence of manifolds M with Ric Mp = —(n—1)¢; and §; — 0, and the M;

containing longer and longer geodesics (L~ — 0).

Let v+ denote minimal geodesics from ¢i to p. Define by(x) = d(z,q+) — d(p, q+),
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a function that is similar in spirit to the Busemann function. Let by be the harmonic
function satisfying

Aby =0 (on Bg(p))
b |08, = b+

The function by will serve as our Busemann function-equivalent in the almost setting.
We will prove various average integral estimates relating b4 to by on balls centered at
p. The first lemma shows that by can be uniformly approximated by by on Bg(p).

Lemma 1.2. Assuming (1)-(3), then
lbs — by| < ¥ (on Bgr(p)).

Proof: By Laplacian comparison, A(by —by) = Aby < V. By Lemma 8.5 of [1], setting
t=0,

b:l:_b:l: Z \I/LR2(R)+maX33R(p)(bi—bi—\IfLRQ) = LR2(R)+maX33R(p)(—\I/LR2) Z —\I/
We have by (x) + b_(x) = E(x) — E(p). By Theorem 1, this gives —e < b, —b_ < W,

Therefore, by the minimum principle, —e < by + b_. Combining these observations,

b, — U <b,
< —b_+ V¥
< —-b_+2V¥
< by 20+
Thus, by, — by, <2V +e= V(5§ L' ¢n, R) O

Recall that in the splitting theorem, we used the minimum principle to show b, +b_ =
0. In the almost splitting theorem, we showed ¢ < b, +b_ above. We have the following
L? gradient estimate.

Lemma 1.3. Assuming (1)-(3), then
BR(p)|Vb+ - Vb+|2 <v

Proof: Using integration by parts and by = by on OBg(p), we have
Brp|Vbi — Vb+|2 = —BapA(by — b.)(by —by)
<Br(p) |A(by —by)(by —by)|
< Vpp|A(y —by)],  (Lemma 1)
= Wiy (p)| Aby |
<v
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g

In the splitting theorem, we proved the Busemann function was linear, i.e. Hess b, =

0. In the almost setting, we instead provide an average L* estimate on Hessy, .
Lemma 1.4. Assuming (1)-(3), then
(| Hessp, |* < U

Bry2

Proof: By Bochner’s formula,
1
5A(|Vb+|2) = |Hessp, |> + Ric(Vb,,Vb,)

Using the cutoff function ¢ constructed in Theorem 8.16 of [1], with ¢|p, ) = 1, [A¢] <
c(n), we have

By | Hess, |* <pp) ¢ Hessp, |
< Br(p) %¢A(|Vb+|2 — 1)+ (n—1)6|Vby|?, (Ric bound)
<Br(p) %\M!HVMZ — 1|+ (n = 1)§|Vby >, (integration by parts)
< ¢(n) )| Vb4 |* = 1] + (n — 1)8| Vb, |*
< W, (Lemma 2)

Next, we show a quantitative version of the Pythagorean theorem.

Lemma 1.5. Assume (1)-(3). Let z,z,w € B (p), with = € by'(a), and z a point on
b.!'(a) closest to w. Then

|d(1‘72)2 + d(z,w)2 - d([L’,U})2| <wv

Proof: We apply the iterated segment inequality, volume comparison, and Lemma 3 to
show there exist x*, z*, w* such that,

and in addition, if o : [0,e] — M is minimal from z* to w*, then,

I(s)
(1.5) /U/O |Hessp, (75(t))|dtds < W
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, where U C [0,¢] is of full measure, such that for all s € U, the minimal geodesic
75+ [0,1(s)] = M from x* to o(s) is unique. By the segment inequality,

R
/ Fites vz, )adr < CR(BG, | +1B D) [ (s |
B(z,e)xB(p, %) B(p, %)

By Markov’s inequality, there exists x* € B(x,€) such that,

CR(IB(z,¢)| + |B(p, §)I)
f ess x*yr d’l“ S 4 / Hess b
/B(p,iC e bl ) |B(z,€)] B(p,§)| .

Now, again by the segment inequality,

/( - )]—";\Hessbﬂ(m*,.)(z,w)dzdw < CR(\B(Z,E)H—]B(w,e)])/ Fltess by (T, 7)dr
B(z,e) X B(w,e

B(p, %)

Combined with the above and Markov’s inequality again, there ezists z* € B(z,€),w* €
B(w, €) such that,

C2F(1B(y,9)] +|B(z )| Bla. )| + B(p. )]
F .y *’ * < ? ? ) D) H b
it () 2 Bl B [Blw.e) i 1

By relative volume comparison and Lemma 3, we therefore have,

I(s)
FF e b+‘($*,,)(z*,w*) = / / |Hessy, (15(t))|dtds < ¥
vJo

Therefore, we have the desired x*, z*, w*. Similarly, we apply the segment inequality to
the function, Fjvp.|-1| to get,

(L6) / |IVby (o(s))] — 1]ds < @

The Abresch-Gromoll inequality implies |E(z) — E(x)| < U, which means b, (z) —
bi(x)| —d(z,x) < V. By Lemma 1,

(L.7) ld(z,2) — (b () — by ()] < U

Equation (7), Lemma 1, and the Cheng-Yau gradient estimate (supp,, |Vby| < C)
glve

(1.8) /Oe Vb, (o(s)) —o'(s)|ds < W
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Recall o'(s) = Vbi(o(s)), since by is a distance function. So (5) provides an integral
estimate of the gradients along a geodesic. Furthermore, notice that for all t € [0,1(s)],

= | Hess v, (T.(u), 7(u))du|, (since V.1, =0)

I(s)
< / |Hess v, (75(u))|du
0

Integrating both sides by U, we get

/U (Vb (ra(8),72(1)) — (Vb (ra(1(3))), 7 (1)) < / / \Hess v, (7,(u))|duds < U

We now have the tools to prove the quantitative Pythagorean theorem,

e

sds £ WU

I
L —

-

1 1
gd(z,w)2 = éd(z*, w*)? £ W

b.(o(s)) —by(o(0))ds £V, (Lemma 1)

b (7:(I(s))) — by (7:(0))ds £ ¥

(7(s) ( ),[0,e] C U full measure)

:// (Vb (74(t)), 72(t))dtds £ U
(b (ma(t)). 7/(1)) = dim(rs(t»)
/ / (Vb (7 (1())), 7/(1(s)))dtds £ ¥, (by (9))

= /<Vb+(Ts(l(8)))aTs’(l(S))ﬂ(S)dS £V

u
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The above quantity in the last line is,

/(Vb+(fs(l(8))),Té(l(S))ﬂ(S)dS = /<Vb+(0(8))),Ts’(l(S))ﬂ(S)d& (7s(I(s)) = o(s))

u u

— [ s, (b ®)
:/l’(s)l(s)ds:lz\lf

(1st variation of arc length = U'(s) = (o' (s), 7.(I(s))))
1, . 1,
=5l (e)—él (0) £ P

1 9 1 9
= _ N + U
2d(az,w) 2d(:1:, z)

0

The quantitative Pythagorean theorem allows us to prove the quantitative version

of the almost splitting theorem.

Theorem 1.6. Assuming (1)-(3), there is a length space X such that for some ball
Bra((0,2)) C R x X with the product metric, we have,

da(Br/a(p), Bra((0,2))) <V

Proof: By the quantitative Pythagorean theorem, B% (p) is W-Gromov-Hausdorff close
to a subset of Bg((O, z)) C R x b'(0). By the Abresch-Gromoll inequality, the subset
can be taken to be the whole ball Bg((o,l‘)). However, the metric space b;'(0) with
the inherited metric from M 1is not a length space. To get a length space X, take
B%(pi) € M}, where Ricyn > —(n — 1)6; and 6; — 0; let M = (M,6;'g). By
Gromouv’s compactness theorem, the sequence Bg(pi) subconverges. It must subconverge
to a ball in a product space R x X by the theorem. Since B%(pi) 18 a length space, and
the limit of length spaces is a length space, X must be a length space. O

Theorem 2 is equivalent to the splitting theorem extending to Gromov-Hausdorff

limit spaces.

Theorem 1.7. Let M dony y satisfy Ricyn > —(n —1)0;, where ; — 0. If Y con-

tains a line, then'Y splits as an isometric product Y = R x X, for some length space X.

Proof: If Y contains a line, the M]' must contain minimizing geodesics ; of length
L;, where L; — co. By Theorem 2, there exists a ball Bg,(p;) € M]* that is V-GH close
to Br,((0,7;)) C R x X;, where X; is some length space. Since the R; — oo, in the
limit Y splits isometrically as R x X, for some length space X. U
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