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1 Introduction

I’ll present two proofs of the classical fact in enumerative geometry that every smooth cubic surface ⊆ P3

has exactly 27 lines. There is a ”simpler” proof that uses mainly linear algebra to first show there are exactly
27 lines on the Fermat cubic x30 + x31 + x32 + x34 = 0, and then proves every other smooth cubic must have the
same number of lines. I’ll present two other proofs: 1) Realizing the smooth cubic surface as the blow up of
CP2 at 6 points, and counting lines in the blow up 2) Schubert calculus on the cohomology of Gr(2,4), the
Grassmannian of 2-planes in C4.

2 Counting lines on smooth cubic surface as Bl6ptsCP2

Take 6 sufficiently general points in CP2, i.e. no three points are collinear, no six lie on a conic. There
exists a rational map ϕ ∶ CP2 ⇢ CP3 as follows: Take the vector space of cubic polynomials in CP2, which
is (3+2

2
) = 10 dimensional. Asking that the cubic passes through 6 points imposes 6 linearly independent

conditions. Hence, there exist 4 linearly independent cubics fi vanishing at the 6 points. Define

ϕ([x0 ∶ x1 ∶ x2]) ∶= [f0(x0, x1, x2) ∶ f1(x0, x1, x2) ∶ f2(x0, x1, x2) ∶ f3(x0, x1, x2)]

This map is clearly undefined at the six points. After blowing up at the 6 points, by the theorem of
elimination of indeterminacy, there exists a morphism ϕ′ ∶ Bl6ptsCP2 → CP3 and the commutative diagram.

Bl6ptsCP2 CP2

CP3

π

ϕ′ ϕ

, where π is the contraction map (Draw picture of blow up). The map ϕ′ is an embedding and is the same
embedding from the Kodaira embedding theorem with the anti-canonical bundle O(3L − E1 − . . . − E6) of
Bl6ptsCP2. Hence, the image S ∶= ϕ′(Bl6ptsCP2) is a smooth surface. We need to verify it’s cubic; it’s
enough to check ∫SH2 = 3, since by Bezout’s theorem, a cubic surface will intersect a line at 3 points
(H = PD(hyperplane), so H2 is the class of intersection of two hyperplanes or a line). The embedding map
satisfies c1(ϕ′)∗(O(1)) = (ϕ′)∗H = 3H − PD(E1) − . . . − PD(E6) = c1(O(3L −E1 − . . . −E6)) So, since cup
product is Poincare dual to intersection,

∫
S
H2 = ∫

Bl6ptsCP2
((ϕ′)∗H)2 = ∫

Bl6ptsCP2
(3H−PD(E1)−. . .−PD(E6))2 = (3L−E1−. . .−E6)⋅(3L−E1−. . .−E6)

We have that L is the class of line that doesn’t intersect Ei, E
2
i = −1, and Ei ⋅Ej = 0 since the exceptional

divisors are disjoint from each other. Thus, the above integral is 3 and the surface is cubic.
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We can characterize lines on S as rational curves with self-intersection −1.

Lemma 1 If ` is a line on S, then `2 = −1 on S. Conversely, if C ⊂ S is a smooth irreducible rational curve
with C2 = −1, then C is a line.

Proof: Let ` ⊂ S be a line. By the adjunction formula (2g − 2 = ` ⋅ (`+KS)), we have −2 = `2 + ` ⋅ (−L), since
the canonical divisor KS = −L. Hence `2 = −1 on S. Conversely, by adjunction again, −2 = C2 +C ⋅KS, and
thus 1 = C ⋅L. The degree of C is 1, so C is a line.

Thus, lines on S are smooth rational curves with self intersection −1. So to count the lines on S, we count
rational curves with self intersection −1. Using the blow up description of the cubic surface, we see that
the exceptional curves E1, . . . ,E6 give us 6 lines. Furthermore, the proper transform L − Ei − Ej of the
unique line through pi and pj in CP2 give us (6

2
) = 15 lines, as (L − Ei − Ej)2 = −1. The proper transform

2L − Ei1 − . . . − Ei5 of the unique conic through 5 points gives us (6
5
) = 6 lines (Draw pictures here). This

already gives us a total of 27 lines! To see that these are the only lines, any other line in Bl6ptsCP2 is of
the form D = aL − b1E1 − . . . − b6E6 with a > 0, bi ≥ 0 and D2 = −1. It follows from Cauchy-Schwarz implying
a = 1 or 2, and a2 −∑ b2i = −1 that the above are the only lines.

We have shown that when the cubic surface is a blow up of the projective plane at 6 sufficiently general
points, then it has exactly 27 lines. But actually it’s a theorem that every smooth cubic surface is obtained
in this way. Thus every smooth cubic surface has exactly 27 lines (Heuristic: we know {Bl6ptsCP2} ⊆
{smooth cubic surfaces}. Both sides are 19 dimensional, LHS forms a open dense subset).

3 Schubert calculus on Gr(2,4)
Every 2-plane in C4 may be represented as a rank 2, 2 × 4 matrix with complex coefficients. We are

interested in Gr(2,4), because 2-planes in C4 correspond to lines in P3, after projectivization of the row
space. After Gaussian elimination, there are 6 possible row echelon forms of an element in Gr(2,4),

Σ0,0 = [1 0 ∗ ∗
0 1 ∗ ∗] ,Σ1,0 = [1 ∗ 0 ∗

0 0 1 ∗] ,Σ2,0 = [1 ∗ ∗ 0
0 0 0 1

]

Σ1,1 = [0 1 0 ∗
0 0 1 ∗] ,Σ2,1 = [0 1 ∗ 0

0 0 0 1
] ,Σ2,2 = [0 0 1 0

0 0 0 1
]

, where ∗ signifies an arbitrary complex number. We see that Σ0,0 is a complex 4-cell, etc. and they
provide a cellular decomposition of Gr(2,4). These are called the Schubert cells. We first find a geometric
interpretation of the cellular decomposition. Fix a flag p ∈ L ⊂ H, where we take the point p = [0 ∶ 0 ∶ 0 ∶ 1],
the line L = {x0 = x1 = 0}, and the hyperplane {x0 = 0}. Using the matrix descriptions of the Σi,j , it is easy
to see that

Σ2,2 = {L},Σ2,1 = {`∣p ∈ ` ⊂H},Σ1,1 = {`∣` ⊂H},Σ2,0 = {`∣p ∈ `},Σ1,0 = {`∣` ∩L ≠ ∅},Σ0,0 = Gr(2,4)

and we have the cellular decomposition,

Σ2,2 ⊂ Σ2,1 ⊂ Σ1,1 ∪Σ2,0 ⊂ Σ1,0 ⊂ Σ0,0

Since these are complex cells, the cohomology is even dimensional and free abelian, i.e.

H0(Gr(2,4);Z) = Zσ0,0,H2(Gr(2,4);Z) = Zσ1,0

H4(Gr(2,4);Z) = Zσ2,0 ⊕Zσ1,1,H6(Gr(2,4);Z) = Zσ2,1,H8(Gr(2,4);Z) = Zσ2,2
, where σi,j are the generators of cohomology corresponding to the Σi,j .
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The calculation of 27 lines on the cubic surface will be a characteristic class calculation involving the
Schubert classes. So, we calculate part of the cohomology ring of Gr(2,4), namely the classes σ11σ20, σ

2
10,

and σ2
11. First, fix another flag p′ ∈ L′ ⊂ H ′, in order the make intersections transverse. We see that σ11σ20

represent the lines ` which are contained in H and meet p′. Generically p′ /∈ H, so there are no such lines,
i.e. σ11σ20 = 0. We see that σ2

11 represent the lines ` contained in the hyperplanes H and H ′. The intersec-
tion H ∩H ′ will be only one line, so σ2

11 = σ22. To calculate σ2
10, we know that σ2

10 = aσ20 + bσ11 for some
integers a, b. From this, we have σ2

10σ20 = aσ22 and σ2
10σ11 = bσ11. Taking a third flag p′′ ∈ L′′ ⊂ H ′′, the

class σ2
10σ20 represents the lines ` that meet L,L′ and contain p′′. Lines meeting L′ and containing p′′ span

a plane. The line L will intersect the plane at only one point, so there is only one line satisfying all three
conditions. Therefore, σ2

10σ20 = σ22. Similarly, σ2
10σ11 will represent lines ` intersecting L,L′ and contained

in the hyperplane H ′′. Each line L,L′ will intersect H ′′ at one point respectively, and there exists a unique
line connecting the two points. Thus a = b = 1, i.e . σ2

10 = σ20 + σ11.

Recall that we have the tautological bundle E over Gr(2,4). We will calculate the classes of Sym3E∗,
the fiber of which are degree 3 homogeneous forms on the line `. Now take a smooth cubic surface S = {F =
0} ⊆ P3, which is the zero-set of a degree 3 homogeneous polynomial F . Given ` ⊆ CP3, we can restrict
F ∣`, and thus get a section s of Sym3E∗. The top Chern class of Sym3E∗ represents the 0-set of a generic
section. The zeros of the section are the lines contained in the cubic surface S! Thus we calculate

∫
Gr(2,4

c4(Sym3E∗)

with rkCSym
3E∗ = (2+3−1

1
) = 4. The splitting principle can be used to calculate c4(Sym3E∗): any formula

of Chern classes of a vector bundle derived from assuming E is a direct sum of line bundles actually holds.
Using this, we have

c4(Sym3E∗) = 9c2(E∗)(2c1(E∗)2 + c2(E∗)),with c1(E∗) = σ10, c2(E∗) = σ11

Thus, c4 = 9σ11(2σ2
10 + σ11) = 27σ22 ⇒ ∫Gr(2,4) c4 = 27. This number is up to multiplicity, but if we assume

the section s has transverse zeros, then there exactly 27 lines. The section is transverse precisely when X is
a smooth cubic surface.
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