
CURVE COUNTING AND MODULAR FORMS TALK

BENJAMIN ZHOU

Contents

1. Abstract 1

2. An enumerative question... 1

3. Counting maps and/or curves 2

4. Gromov-Witten Invariants 2

5. Some results in Gromov-Witten theory 3

6. Gromov-Witten theory of an elliptic curve 4

7. Gromov-Witten theory of a K3 surface 5

8. Conjectures for S × E 6

9. Local P2 6

10. Quintic threefold 6

References 7

1. Abstract

Gromov-Witten invariants ideally count genus g Riemann surfaces in a target space

X by integrating over the moduli space of stable maps. When X = P2, these in-

variants generalize classical numbers in enumerative geometry considered by the likes

of Euclid, Schubert, and Hilbert. In the 1990s, physicists used mirror symmetry as

duality between Type IIA and Type IIB string theory to miraculously compute the

Gromov-Witten invariants of the quintic threefold. When one forms the generating

function of Gromov-Witten invariants over all genus g, it may have some surprising

yet beautiful properties. Two of them are the Virasoro constraints, studied by Getzler

et. al. and modularity, proven by a formula of Yau-Zaslow. I will explain some of

the above terms, and present how when X = an elliptic curve E or a K3 surface, the

generating function of Gromov-Witten invariants is a modular form.

2. An enumerative question...

Schubert (1874): Given 4 lines ℓ1, . . . , ℓ4 in 3-space, how many lines ℓ pass through

them? The answer is 2 lines. Assume that the lines ℓi are in generic position by

principle of conservation of number. The first line is obtained as follows: assume that
1
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ℓ1 and ℓ2 intersect. They will span a plane. Lines ℓ3 and ℓ4 intersect the plane at some

points. The line connecting the intersection points intersects all four lines. The second

line is obtained as follows: assuming ℓ1 and ℓ2 intersect, form the plane containing

the intersection point and line ℓ3. Line ℓ4 will intersect this plane at some point. The

second line is obtained by connecting that point with the intersection point of the first

two lines.

We can also use Schubert calculus. Consider the Grassmannian Gr(2, 4) = {V ⊆
C4|dimCV = 2}, or the moduli of lines ℓ in CP3 after projectivization. As a complex

manifold dimCGr(2, 4) = 4. Define the cycles Hi := {ℓ ∈ Gr(2, 4)|ℓ ∩ ℓi ̸= ∅}. This

is a codimension 1 condition on the space of lines, so we expect H1 ∩ . . . ∩ H4 to

be of dimension 0 and we expect to count a finite number of lines. We calculate

PD([H1]) ∪ . . . ∪ PD([H4]) = PD([H1 ∩ . . . ∩H4]) ∈ H8(Gr(2, 4),Z) via Schubert cell

decomposition of Gr(2, 4). Its degree is 2, in agreement with the answer from the first

approach.

3. Counting maps and/or curves

We are essentially counting maps f : CP2 → CP3 such that Im(f) ∩ ℓi ̸= ∅ for each

i. How to approach the question of counting maps? We start with the ”moduli space”

of all maps and impose constraints on the space so that the resulting space we are

interested in counting is compact and of dimension 0, hence has finite cardinality.

As an example, suppose f : CP1 → CP3 is a degree d holomorphic map, or locally

f looks like z = [z0 : z1] 7→ [f0(z) : f1(z) : f2(z)], where the fi are homogeneous

degree d polynomials. Equivalently, f∗[CP1] = d. What is the dimension of {f : CP1 →
CP2|f∗[CP1] = d}? The answer is 3(d+1)−1−3 = 3d−1. Here d+1 is the dimension of

the space of homogeneous, degree d polynomials in 2 variables, -1 is for projectivization,

-3 is for reparametrization of CP1 as Aut(CP1) = PGL2(C). We impose constraints to

cut 3d− 1 to 0 by specifying incidence conditions of f.

4. Gromov-Witten Invariants

Gromov-Witten invariants are defined by the moduli space of stable mapsMg,n(X, β).

An element of the moduli space is a stable map f : (C, p1, . . . , pn) → X such that

f∗([C]) = β ∈ H2(X,Z). The n marked points are distinct pi ̸= pj. We have natural

morphisms given by evaluation maps and a forgetful morphism to the moduli space of

curves Mg,n. The Gromov-Witten invariants are defined as follows,

Definition 4.1. Let γi ∈ H∗(X). The genus g, n-pointed Gromov-Witten invariant of

X in curve class β with incidence conditions γi is

Ng,n(X, β|γ1, . . . , γn) :=
∫
[Mg,n(X,β)]vir

ev∗1γ1 ∪ . . . ∪ ev∗nγn
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We list some properties,

(1) Ng,n = 0 if dimCMg,n(X, β) ̸=
∑

i degCγi
(2) If g = 0, β = 0, we are considering stable maps from a Riemann sphere to a

point. Then Ng,n =
∫
X
γ1 ∪ γ2 ∪ γ3

(3) The expected dimension of Mg,n(X, β) is (dimX − 3)(1− g) +
∫
β
c1(TX) + n

(4) Mg,n(X, β) can be compactified by allowing domain curves to degenerate to

have nodes (Deligne-Mumford compactification)

(5) Mg,n(X, β) may not be smooth or of pure dimension, so it may not have a

fundamental class, but it may admit a virtual fundamental class that one can

still integrate the define the invariants with.

(6) Often one forms the genus g generating series Fg of GW invariants

Fg :=
∑

β∈H2(X,Z)

Ng(X, β)qβ

by summing over auxillary variables.

Remark 4.2. A node is a singular point such that locally the curve is described as xy =

0. The partial derivatives of the defining function vanish to order 1, i.e. f(x, y) = xy

with ∇f(0, 0) = (0, 0).

Example 4.3. The previous number as a GW invariant:
∫
M0,4(CP3,H)

∏4
i=1 ev

∗
i (PD[ℓi]) =

2

5. Some results in Gromov-Witten theory

(1) GW(pt) reduces to computing intersection numbers of the moduli space of

curves Mg,n. Two Fields medals of Witten and Kontsevich, also Mirzakhani.

Exhibits KdV hierarchy

(2) GW(curve), Okounkov-Pandharipande, Today hierarchy

(3) GW(surfaces), have results for K3, del Pezzo, GW/SW duality.

(4) GW(CP2). What is Nd =number of genus 0 curves of degree d passing through

3d− 1 points in CP2? 1,1,12 for degrees 1,2,3. Kontsevich recursion formula,

Nd =
∑

d1+d2=d

Nd1Nd2d
2
1d2(d2

(
3d− 4

3d1 − 2

)
− d1

(
3d− 4

3d1 − 1

)
)

Formula is equivalent to the WDVV equations in g = 0 quantum cohomology.

Ordinary cup product counts number of point intersections. Deformed quantum

cup product counts number of sphere intersections. Next few numbers are

N4 = 620, N5 = 87304, N6 = 26312976.

(5) GW(3-folds). Calabi-Yau 3-folds X, GW/DT correspondence, mirror symmetry

as duality between Type IIA and Type IIB string theory. Idea is to compute

N0(X, β) by computing
∫
X̌
Ω, where X̌ is the ”mirror” space.
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Example 5.1. Quintic threefold X = {x5 + y5 + z5 + w5 + v5 = 0} ⊆
CP4. Griffiths-Dwork mirror X̌ = {t(x5 + y5 + z5 + w5 + v5) + xyzwv =

0|t ∈ P1}. Numbers are N0(X, 1) = 2875, N0(X, 2) = 609250, N0(X, 3) =

317206375, N0(X, 4) = 242467530000.

6. Gromov-Witten theory of an elliptic curve

Let E ⊆ CP2 be an elliptic curve. It is given by a cubic equation.

(1) y2 = x(x− 1)(x− λ), λ ̸= 0, 1 is a smooth elliptic curve

(2) y2 = x3, cusp

(3) y2 = x2(x− 1), nodal elliptic curve.

Over C, every elliptic curve is isomorphic to a complex torus, i.e. E ∼= C/Λ where

Λ = {Z+ τZ|τ ∈ H}. The moduli of elliptic curves is isomorphic to H/PSL2(Z).
Question: Given E = C/Λ, what is Nd= the number of degree d covers of E by E?

The answer is Nd = #{Γ′ ⊂ Γ||Γ/Γ′| = d} = σ(d) =
∑

n|d n. From physics, we have

the following,

Theorem 6.1. [Djik]
∑

d≥1
Nd

d
qd = −1

24
log∆(q) + 1

24
log q, where q = e2πiτ .

where ∆(q) = q
∏∞

m=1(1− qm)24 is the modular discriminant of weight 12.

Definition 6.2. A holomorphic map f : H → C is a weight k modular form if f(aτ+b
cτ+d

) =

(cτ + d)kf(τ), where

(
a b

c d

)
∈ SL2(Z). Taking

(
1 1

0 1

)
, we see that f(τ +1) = f(τ).

So f(τ) admits a Fourier expansion f(τ) =
∑∞

n=−∞ ane
2πinτ .

The Gromov-Witten theory of the elliptic curve was solved by Okounkov-Pandharipande.

The Hurwitz numbers are Nd =
∫
M1,0(E,d)

1 as a Gromov-Witten invariant. They

showed that Gromov-Witten generating functions have modularity properties by us-

ing the GW/Hurwitz correspondence, and previous work computing Hurwitz numbers

with the character of ∞-wedge representation of gl∞.

6.1. Brief detour on Hurwitz theory. The data required to define a Hurwitz num-

ber are a degree d cover f : X → Y , a finite set of branch points in Y , and ramification

profiles (partition of d) above them.

Degree d covers of E by E are unbranched. Example of computing H
0

3−→0
((3), (2, 1)2),

in terms of monodromy representations. The formula is

H
g(X)

d−→g(Y )
(λ1, . . . , λn) =

|M |
d!

where |M | is the number of monodromy representations, λi are ramification profiles of

the branch points. Given a branch point bj, take a loop γj in a small neighborhood Uj
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of bj. In Uj, the covering map looks like z 7→ zkj where kj is a the ramification index.

The loop γj will lift to a cycle in Sd of type given by the ramification profile λj.

Anyways, Okounkov-Pandharipande showed that,

Theorem 6.3. Fg ∈ Q[E2, E4, E6] for all g ≥ 0.

where Ek is the weight k Eisenstein series Ek(q) =
ζ(1−k)

2
+
∑

n(
∑

d|n d
k−1)qn. The

latter ring is called the ring of quasimodular forms.

7. Gromov-Witten theory of a K3 surface

Let S be a K3 surface, i.e. a compact complex surface, π1(S) = 0 and KS
∼= OS. K3

surfaces are the only Calabi-Yau surfaces.

Example 7.1. Take the hypersurface {x4 + y4 + z4 +w4 = 0} ⊆ CP3. By adjunction,

its canonical bundle is trivial. This is the only K3 surface up to diffeomorphism.

The cohomology of S is H0 ∼= Z, H2 ∼= Z22, H4 ∼= Z, which implies χ(S) = 24. The

intersection form partly contains the E8 lattice.

7.1. Yau-Zaslow conjecture (1995). Suppose that L → S is a primitive line bundle

such that c1(L)
2 = 2g − 2. The linear system |L| = P(H0(S, L)) of L is of dimension g

and hence isomorphic to Pg, and a generic curve in |L| has genus g. Hence, the space of
rational curves w/ g nodes is of dimension 0 in |L|, as a node introduces one extra linear
constraint. Define ng = # of rational curves in |L| with c1(L) = 2g − 2. Yau-Zaslow

predicted using the duality between Type II on K3 and heterotic on T 4 that,∑
g≥0

ngq
g =

∞∏
m=1

(1− qm)−24

=
q

∆

= 1 + 24q + 324q2 + 3200q3 + 25659q4 + . . .

The numbers in the series expansion have geometric interpretations: Suppose that

S → P1 is an elliptic fibration. Since χ(S) = 24, the fibration has 24 1-nodal fibers, by

the motivic property of the Euler characteristic and χ(E) = 0.

Consider a double cover of P2 → P2 branched along a smooth sextic curve. This

surface is K3 by the Rieman-Hurwitz formula KX = f ∗KY + R. It has 324 2-nodal

rational curves covering the 324 bitangents of the sextic curve. Similarly the number

3200 is the number of tri-tangent planes a quartic surface has in 3-space.

7.1.1. Proof 1 without using GW invariants. Consider the compactified Jacobian J →
|L|. The fiber above a curve C is {(C,L)|deg L = 0}, the moduli space of degree 0

line bundles on C. In fact, J is smooth and hyperkahler as a moduli space of sheaves,
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and J is birational to S[g], the Hilbert scheme of g points on S. Gottsche used the Weil

conjectures to show that ∑
g≥0

e(S[g])qg =
q

∆

Batyrev tells us that birational CYs have the same Betti numbers, hence
∑

g≥0 e(J)q
g =

q
∆
. One can show that e(J) =

∑
g(C)=0 e(J(C)) =

∑
g(C)=0+1, if [C] is primitive in

H2(S). This is ng the count of g = 0 curves. This shows that
∑

g≥0 ngq
g = q

∆
.

7.1.2. Proof 2 without using GW invariants. The second proof by Bryan-Leung uses

family Gromov-Witten invariants. Deformation of complex structure of the target does

not change the GW invariant, and in fact one can always deform to a complex structure

of the K3 such that the GW invariant is 0 (one can compute Mg=0(S, β) = −1).

However S is hyperkahler, so it has an S2-family of Kahler structures. Use this 1

parameter family to define family Gromov-Witten invariants (the expected dimension

goes from -1 to 0).

We also have the following theorem,

Theorem 7.2. (Maulik-Pandharipande-Thomas) Descendant theory of K3 is in 1
∆(q)

QMod≤2g+2r,

where r is the number of insertions. Proof uses vanishing of tautological cohomology of

moduli of curves, and uses descendant theory of the elliptic curve.

8. Conjectures for S × E

Turn to Calabi-Yau 3-folds. There is not a single case of CY3 with exact solutions for

every genus. Generalization of SL2(Z)-modular forms via Siegel modular forms. Genus

g curve classes are of the form [C] = (β, d) ∈ H2(S) ×H2(E) such that β2 = 2h − 2.

Define a generating series summing over g, h, d.

∑
g,h,d

Ng,h,d =
1

χ10(Ω)

Related to heterotic duality, black hole counts, Katz-Klemm-Vafa. The RHS is the

Igusa cusp form - it’s a weight 10 Siegel modular form.

9. Local P2

Coates proves quasi-modularity of generating functions, Jie Zhou.

10. Quintic threefold

X5 ⊂ CP4. Example of a Calabi-Yau 3-fold. Compute Ng,d(X5). Schubert found

N0,1(X5) = 2875 = lines on X5 using Schubert calculus.

CdOGP ’91 computed F0(q) =
∑

d N0,d(X5)q
d in physics as an explicit formula.

Later, Givental, Lian-Liu-Yau proved the mirror conjecture, and proved this formula.
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BCOV in ’93 computed F1(q) in physics. Zinger, Li, Vakil, Zagier proved this in

’07. BCOV in ’93 computed F2(q) in physics. Janda-Ruan-Chen-Guo prove genus 2

conjecture. What about the structure of Fg(q)? Modularity, Holomorphic-Anomaly

equations. Together with Castelnuovo bound, can compute Fg(q) for all g ≤ 51.

Computation of GW invariants of X5 is based on the Quantum Lefschetz Principle,

which determines the former via GW invariants of P4. The latter can be computed via

Atiyah-Bott localization with its torus action. Can apply Lefschetz principle unless

there exists f such that H1(f ∗O(5)) ̸= 0. Problem is if there exists η ̸= 0 holomor-

phic differential on C vanishing with order 5 along each intersection of C w/ a fixed

hyperplane. If C is smooth, then this only happnes if 5d ≤ 2g − 2. Define effective

invariants.
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