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Background on (closed, genus 0) Gromov Witten theory

® Let (M,w) be a 2n-dimensional symplectic manifold, J an w-tame almost complex
structure.
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Background on (closed, genus 0) Gromov Witten theory

Let (M,w) be a 2n-dimensional symplectic manifold, J an w-tame almost complex
structure.

Closed Gromov-Witten theory seeks to count J-holomophic spheres u: 5> — M in a
curve class A € Hy(M; Z) intersecting prescribed cycles X; C M.

Define GWa k (a1, ..., ax) := IW(A,J) evial A ... A\ eviak, where Mg (A, J) is the
Gromov compactification of the moduli space of J-holomorphic spheres with k marked
points, «; are Poincaré dual to Xj, and (evy, ..., evk) are evaluation maps of u at the
k-marked points.

The integral needs to be made sense of, since Mg (A, J) does not carry a fundamental
class. (Methods such as pseudocycles, virtual fundamental classes, Kuranishi structures,
polyfold theory, etc. have been used)

If the boundary strata from the Gromov compactification have codimension > 2, then
Gromov-Witten invariants can be defined. They depend neither on the almost complex

structure J as long as it tames w, nor on the representatives of the cohomology classes «;.
6/69



Open Gromov-Witten Theory (OGW)

® | et L be a Lagrangian submanifold of M.
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® Open Gromov-Witten theory seeks to count J-holomorphic discs u : (D?, S1) — (M, L)
with boundary on L and in a curve class 8 € Hy(M, L), that have prescribed intersection
data in M.

® Unlike in the closed case, there exist boundary strata of codimension 1 in the moduli
space of J-holomorphic discs.

9/69



Open Gromov-Witten Theory (OGW)

® | et L be a Lagrangian submanifold of M.

® Open Gromov-Witten theory seeks to count J-holomorphic discs u : (D?, S1) — (M, L)
with boundary on L and in a curve class 8 € Hy(M, L), that have prescribed intersection
data in M.

® Unlike in the closed case, there exist boundary strata of codimension 1 in the moduli
space of J-holomorphic discs.

® Intuitively, because of Stokes’ theorem, you would not expect the integral above to be
independent of the representatives of cohomology classes being integrated anymore.
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Some previous work in defining Open Gromov Witten invariants

Liu defined OGWs for (M, L) carrying an St action (2002)

Using anti-symplectic involution, Welschinger defined counts of real rational
J-holomorphic curves in dimensions 2,3 (2005)

Fukaya defined OGWs for Calabi-Yau 3-fold and Maslov 0 Lagrangian (2011)
Georgieva extended Welschinger's work to higher, odd dimensions (2016)
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Bounding cochains in Open Gromov Witten invariants

® Fukaya introduced bounding cochains to show Lagrangian Floer theory can be defined in
more general settings.

® The bounding cochain deforms the Floer coboundary operator to one that squares to 0,
and "cancels” codimension 1 bubbling.

® This presentation seeks to explain Solomon-Tukachinsky's approach of defining OGWs
using bounding cochains.
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® let (M,w,J) be a 2n-dimensional symplectic manifold with a w-tame almost complex
structure J, and a relatively spin Lagrangian L.
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® Let = Hp(X,L)/S, where S; is a subgroup of ker (w @ u) : Ha(X,L) — R @ Z. Denote
Bo € I to be the zero element.
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® let (M,w,J) be a 2n-dimensional symplectic manifold with a w-tame almost complex
structure J, and a relatively spin Lagrangian L.

o Let 1 = Hy(X,L)/S, where S is a subgroup of ker (w @ p) : Ha(X, L) - R & Z. Denote
Bo € I to be the zero element.

® Define the Novikov field A = {}~ a Thilai € R, B; € M,w(B;) > 0,lim; 00 w(Bi) = o0}
and At = {3°%,a; T% € Nw(B;) > 0}.

® Denote cochains on L by A*(L), and cochains on X relative to L by A*(X, L).
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® let (M,w,J) be a 2n-dimensional symplectic manifold with a w-tame almost complex
structure J, and a relatively spin Lagrangian L.

o Let 1 = Hy(X,L)/S, where S is a subgroup of ker (w @ p) : Ha(X, L) - R & Z. Denote
Bo € I to be the zero element.

® Define the Novikov field A = {}~ a Thilai € R, B; € M,w(B;) > 0,lim; 00 w(Bi) = o0}
and At = {3°%,a; T% € Nw(B;) > 0}.

® Denote cochains on L by A*(L), and cochains on X relative to L by A*(X, L).

® |ntroduce formal variables s, ty, ..., ty.
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Moduli spaces involved

® Gromov Compactness states that for a sequence of J-holomorphic discs with uniformly
bounded energy, there exists a subsequence that converges up to PSLy(R) action to an at
worst nodal J-holomorphic disc with components that are discs or spheres.
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® Gromov Compactness states that for a sequence of J-holomorphic discs with uniformly
bounded energy, there exists a subsequence that converges up to PSLy(R) action to an at
worst nodal J-holomorphic disc with components that are discs or spheres.

® \When there are marked points, the subsequence converges to a stable nodal
J-holomorphic disc, i.e.

2(# of interior marked and nodal points )4(# of boundary marked and nodal points ) > 3
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Moduli spaces involved

® Gromov Compactness states that for a sequence of J-holomorphic discs with uniformly
bounded energy, there exists a subsequence that converges up to PSLy(R) action to an at
worst nodal J-holomorphic disc with components that are discs or spheres.

® \When there are marked points, the subsequence converges to a stable nodal
J-holomorphic disc, i.e.

2(# of interior marked and nodal points )4(# of boundary marked and nodal points ) > 3

® Denote My1(f) to be the moduli space of g = 0, J-holomorphic stable maps
u:(X,0%) — (M, L) with 1 boundary component, k + 1 boundary marked points, and /
interior marked points. Let evh; : M1() — L be the evaluation map at the b;
boundary marked point, and evij : M1 (8) — M be the evaluation map at the j;
interior marked point.
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Moduli spaces involved

® My1,(B) has virtual dimension n — 3 + p(3) + k + 2. It has codimension 1 boundary.
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Moduli spaces involved

® My1,(B) has virtual dimension n — 3 + p(3) + k + 2. It has codimension 1 boundary.
® The codimension 1 boundary we want to consider are

® Assume My1,/(B) is a smooth orbifold with corners, and the evaluation maps are
proper submersions. The latter assumption will allow us to define pushforward
operations with the evaluation map. This holds for (CP", RP").
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Moduli spaces involved

M 41,1(B) has virtual dimension n — 3 + u(3) 4 k + 2. It has codimension 1 boundary.

The codimension 1 boundary we want to consider are

Assume M1 (/) is a smooth orbifold with corners, and the evaluation maps are
proper submersions. The latter assumption will allow us to define pushforward
operations with the evaluation map. This holds for (CP", RP").

The relative spin condition on L makes M1 (3) orientable.
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A algebra associated to cochains of L

® Let R:=NA[[s, to,...,ty]] and Q :=R[to, ..., ty]. Take the ideals
Ir = <S,t0,...,tN> < Rand Zg = <t0,...,tN> Q.
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A algebra associated to cochains of L

® Let R:=NA[[s, to,...,ty]] and Q :=R[to, ..., ty]. Take the ideals
Ir = <S,t0,...,tN> < Rand Zg = <t0,...,tN> Q.

o Let C:= A*(L)® R and D := A*(X,L) ® Q. Choose 7 € ToA*(X, L; Q) with
dvy = 0,deg~y = 2. Define the A> structure maps m] : C®% — C for k > 0 by

/

mZ(al,..., )—5;(10'041—{— Z —(evbo /\

Bemn, >0 ! j=1

evbB on

||>»
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A algebra associated to cochains of L

® Let R:=NA[[s, to,...,ty]] and Q :=R[to, ..., ty]. Take the ideals
Ir = <S,t0,...,tN> < Rand Zg = <t0,...,tN> < Q.

o Let C:= A*(L)® R and D := A*(X,L) ® Q. Choose 7 € ToA*(X, L; Q) with
dvy = 0,deg~y = 2. Define the A> structure maps m] : C®% — C for k > 0 by

/

mZ(al,..., )—5;(10'041—{— Z —(evbo /\

Ben,i>0 ! j=1

evbB on

||>»

® (evby), is defined by integration over the fiber, as it's a proper submersion. The output
is a chain given by all points that lie on a boundary of a disc with boundary constraints
a1, ...,k and [ interior constraints ~, for all /.
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A algebra associated to cochains of L, cont'd

® The {m,}32, satisfy the A> relations, i.e.

Z (—1)€(a)mzl(a1, e, O, mz2(04,', ey a,-+k2_1), ity e ,Ozk) =0
kit+ko=k+1,1<i<k;

, 8 I Byx
* Furthermore, define m” := Y500 150 1 fMo,/(ﬂ) /\,-Zl(ewjﬁ) v
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Bounding pairs and the superpotential

® Define (v, b) to be a bounding pair with v € ZoA*(X, L; Q), dy = 0,degy = 2, and
b € IrC,degc b =1 if the Maurer-Cartan equation holds

Zml(b®k) =c-1
k>0

where 1 is the constant function on L and ¢ € Zg with deg ¢ = 2. Here b is called a
(weakly) bounding cochain.
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® Define the superpotential

Q. 6) = Q. b) = (~1)"(Y 15 ((67), b) + )
k>0

Here (¢,7) == (—1)" J € Am is the Poincaré pairing.
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Bounding pairs and the superpotential

® Define (v, b) to be a bounding pair with v € ZoA*(X, L; Q), dy = 0,degy = 2, and
b € IrC,degc b =1 if the Maurer-Cartan equation holds

Zml(b®k) =c-1

k>0

where 1 is the constant function on L and ¢ € Zg with deg ¢ = 2. Here b is called a
(weakly) bounding cochain.

® Define the superpotential

Q. 6) = Q. b) = (~1)"(Y 15 ((67), b) + )
k>0

Here (¢,7) == (—1)" J € Am is the Poincaré pairing.
® The superpotential is a function on the space of bounding pairs. Note b is not necessarily

closed.
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Invariance of the superpotential

® Let (v, b) be a bounding pair with respect to J, and (7', b’) a bounding pair with respect
to J'. There exists an equivalence relation called gauge equivalence on bounding pairs

that essentially constructs an isotopy between them.

® S-T showed the following,

Theorem (Invariance of the superpotential, S-T)
If (77 b) ~ (7/7 b,)/ then QJ(’77 b) = QJ’(’}//? b,)

® In proving this invariance, need to consider curve classes 3 € Im{(H>(X, L) — Hi(L))} as
a special case. " Cancel out” this possible degeneration by also considering moduli space

of spheres with 1 marked point intersecting L.
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Classification of Bounding Pairs

® Define a map p : {bounding pairs}/ ~— (ZoH*(X, L; Q))2 ® (Zr)1-n,

o[, b)) = (1], /L b)

® |n certain settings, p is bijective,

Theorem (Classification of bounding pairs, S-T)
Assume H*(L;R) = H*(S";R). Then p is bijective.

® Reason for the term " point-like”: bounding cochain b is therefore determined up to
gauge equivalence by its form part of degree n, which will be a multiple of the Poincaré
dual of a point.
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Definition of OGWs using bounding cochains

® Assuming the theorems above, we can define Open Gromov-Witten invariants of the pair

(M, L). Take a basis Iy, ...,y of H*(M, L;R). Set I := ZJ'N:() tjl; and degt; =2 — [[}].
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® Q(~, b) is independent of representatives of [(, b)], because of gauge equivalence.

36/69



Definition of OGWs using bounding cochains

® Assuming the theorems above, we can define Open Gromov-Witten invariants of the pair

(M, L). Take a basis Iy, ...,y of H*(M, L;R). Set I := ZJ'N:() tjl; and degt; =2 — [[}].

® Since p is a bijection, choose a bounding pair (v, b) such that

ol b)) = (0], /L b) = (I.s)

® Q(~, b) is independent of representatives of [(, b)], because of gauge equivalence.
® Define the Open Gromov-Witten Invariants OGWj , : H*(M, L; R)® — R by,

OGWp (T, .-, T;)) := coefficient of T7 in 8y, ...0: 0£Q(y, b)|s=t=0

and extending linearly to general input.
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Definition of OGWs using bounding cochains

® Assuming the theorems above, we can define Open Gromov-Witten invariants of the pair

(M, L). Take a basis Iy, ...,y of H*(M, L;R). Set I := ZJ'N:() tjl; and degt; =2 — [[}].

® Since p is a bijection, choose a bounding pair (v, b) such that

ol b)) = (0], /L b) = (I.s)

® Q(~, b) is independent of representatives of [(, b)], because of gauge equivalence.
® Define the Open Gromov-Witten Invariants OGWj , : H*(M, L; R)® — R by,

OGWp (T, .-, T;)) := coefficient of T7 in 8y, ...0: 0£Q(y, b)|s=t=0

and extending linearly to general input.

® The OGWs defined this way are invariant with respect to w-tame almost complex
structures and representatives of the cohomology class of interior constraints [7], because
of gauge equivalence.
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Axioms of OGWs

® Kontsevich-Manin (1994) gave axioms that a Gromov-Witten theory should satisfy.

Solomon-Tukachinsky showed OGWj  defined above satisfy some of the
Kontsevich-Manin axioms, including

(1) Degree axiom: OGWjs (A1, ..., A;) =0 unless
n=3+pu(B)+k+20=kn+ ;A
(2) Fundamental class axiom:

—1 when (k,1,5) = (1,1,
OGWﬁ,k(laAla--.,A/_l):{ (k,1,8) = (1,1, Bo)

0 otherwise

(3) Deformation invariance: OGWj , remain constant under deformations of the
symplectic form w, for which L remains Lagrangian.
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Properties of q

® |n the definition of

/

mZ(al,..., k) =0k 1dag + Z evbg /\(ew ’y/\/\ evbB ) )
BeM,i>0 ! j=1 j=1

it is useful for calculational purposes to isolate terms in the sum and define

/

k
QfJ(Oﬂ;---vak;ﬁd,-~-77/)1::(9Vb0)*(/\(evﬁafhﬁ A /\(ebe)*OU)
j=1 j=1

for (k,1,8) # (1,0, Bo) and g;%(er) = dav, so that

T8
m) (a1, ..., o) = Z quvl(al,...,ak;'y,...,'y)
pgen, ;>0
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Properties of q

® The operators qf, satisfy the following properties:

* Fundamental class: q’fv,(al, ceosags Ly, oo y—1) = —1 when
-1 if (O’ 17 BO)
k,1,8) =
( f) {0 otherwise
das if (k,1) = (1,0)
_1\degai . _
. B . (—1)%eMay Aag  if (k1) = (2,0)
® Energy zero: q,° (a1, ..., 071, .. .,Y) = _
kol = if (k1) =(0,1)
0 otherwise

® Top Degree: Suppose (k,/,5) ¢ {(1,0,5), (0,1, o), (2,0, 50)}, then (qf’,(a;fy))n =0
for all lists «, 7.
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Gauge equivalence

e Work with a family of almost complex structures {J;} and a slightly bigger moduli space:

Mig10(B) = {(t,u, 2, W) [(u, Z, W) € Myyr,1(8; Je)}

42/69



Gauge equivalence

e Work with a family of almost complex structures {J;} and a slightly bigger moduli space:
Miciri(B) = {(t,u, 2, W) |(u, 2, W) € Mis1.1(8: Je)}

® Have evaluation maps efvvbj ; ﬂkﬂ,/(ﬁ) — I x L, and Evvlj
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Gauge equivalence

e Work with a family of almost complex structures {J;} and a slightly bigger moduli space:
Miciri(B) = {(t,u, 2, W) |(u, 2, W) € Mis1.1(8: Je)}

® Have evaluation maps efvvbj : /T/IJHL/(B) — I x L, and Evvlj
e Can similarly define A structure maps my : A*([0,1] x L, A)®* — A*([0,1] x L, A).
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Gauge equivalence

e Work with a family of almost complex structures {J;} and a slightly bigger moduli space:
Miciri(B) = {(t,u, 2, W) |(u, 2, W) € Mis1.1(8: Je)}

® Have evaluation maps efvvbj : /T/le+17/(ﬁ) — I x L, and Evvlj
e Can similarly define A structure maps my : A*([0,1] x L, A)®* — A*([0,1] x L, A).

® A bounding pair (v, b), is gauge equivalent to a bounding pair (7', b') s if
b € A*([0,1] x L; A) satisfying b’{O}XL =b, b‘{l}xL =b' and

> o m(b¥) =c-1

k>0

and 37 € A*([0,1] x X,[0,1] x L; A) with d¥ = 0 and Fl{o1xx = 7. F{1}xx =7
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Proof of classification of bounding pairs (for cohomology

spheres)

® We first show p is well defined: assuming n > 0, if (v, b) ~ (v, V'), then [y] = [¥/] and
fL b= fu v

® Proof of well-definedness: By definition of gauge equivalence, there exist
v € A*([0,1] x X,[0,1] x L;\) with dy =0 and §|{0}><X =7, §|{1}><X =+'. By a
generalized Stokes’ theorem on orbifolds with corners, [y] = [y']. We also have
b € A*([0,1] x L; \) with b’{O}XL = b, b|{1}xL = b/, and satisfying the Maurer-Cartan
equation.
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Proof of classification of bounding pairs (for cohomology

spheres), cont'd

® \We have

[ oLy ]
L L a(IxL) IxL

Z/ (¢-1—- Z E{k,,([vk;'"yk))nﬂ (Maurer-Cartan)
IxL (kazﬂ)i(]'?OvﬁO)

[wph!

— [ (€ Dot~ @20(F) + foa()ria (Top Degree)
IxL
= / (& Dns1— (BAD—=Fl1)nia
IxL
® This equals zero since deg b =1 and 5 € A*(/ x X, I x L), d5 = 0. Since & € A*([0,1]; A)

and n >0, (€)p+1 = 0. Thus, the map p is well defined.
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Definition of the obstruction classes

® To prove classification or bijectivity of the map p, we define obstruction classes motivated
by [FOOO]. The vanishing of obstruction classes signifies the existence of a bounding

cochain.
® There exists a natural valuation v : R := A[[s, to, . .., ty]] = R>g defined by
N
Za Thisk H £ = mf (w(B) + K+ > )
a=0

® Denote FER the filtration on R defined by A € FER <= v()\) > E. The filtration
defines a topology on R: a sequence {x;} converges in R if YE € R>q,3N such that for
Yn> N, a, € FER.
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Definition of the obstruction classes

® Given b€ C:= A*(L) ® A\[[s, to, . . ., t]], write b = > 2, A;b; with

bj € A*(L),\; = THisk [TV, t2. We can order the {Aj}%20 such that if i < j, then
l/()\,') S V()\j).
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Definition of the obstruction classes

® Given b€ C:= A*(L) ® A\[[s, to, . . ., t]], write b = > 2, A;b; with
bj € A*(L),\; = THisk [TV, t2. We can order the {Aj}%20 such that if i < j, then
l/()\,') S V()\j).

® Define the index £ to be the largest index of {);}7% such that v(A,) = E.
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Definition of the obstruction classes

® Given b€ C:= A*(L) ® A\[[s, to, . . ., t]], write b = > 2, A;b; with
bj € A*(L),\;j = THisk HLV:O t2. We can order the {Aj};2 such that if i < j, then
v(Ai) < v(X).

® Define the index £ to be the largest index of {);}7% such that v(A,) = E.

® Suppose we have a cochain b(j) € C that solves the Maurer-Cartan equation modulo

terms in FEC, ie.
m? (ebn) = iy - 1 (mod FEC)
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Definition of the obstruction classes

® Given b€ C:= A*(L) ® A\[[s, to, . . ., t]], write b = > 2, A;b; with
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® Define the index £ to be the largest index of {);}7% such that v(A,) = E.
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terms in FEC, ie.
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® Define the obstruction classes o; € A*(L) for j =k +1...,K/41 to be,

o; := coefficient of )\; in m”(eb0)
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Definition of the obstruction classes

® Given b€ C:= A*(L) ® A\[[s, to, . . ., t]], write b = > 2, A;b; with
bj € A*(L),\;j = THisk HLV:O t2. We can order the {Aj};2 such that if i < j, then
v(Ai) < v(X).

® Define the index £ to be the largest index of {);}7% such that v(A,) = E.

® Suppose we have a cochain b(j) € C that solves the Maurer-Cartan equation modulo

terms in FEC, ie.
m? (ebn) = iy - 1 (mod FEC)

® Define the obstruction classes o; € A*(L) for j =k +1...,K/41 to be,
o; := coefficient of )\; in m”(eb0)

® The o; are closed and satisfy deg o; = 2 — deg \;.
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Proof of classification of bounding pairs (for cohomology

spheres), cont'd

® We prove the following proposition, which shows p is surjective: assuming
H*(L; R) = H*(S";R), then for any closed v € (ZgD)2 and any a € (Zgr)1—n, there exists
a bounding cochain b for m” such that fL b=a.
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Proof of classification of bounding pairs (for cohomology

spheres), cont'd

® We prove the following proposition, which shows p is surjective: assuming
H*(L; R) = H*(S";R), then for any closed v € (ZgD)2 and any a € (Zgr)1—n, there exists
a bounding cochain b for m” such that fL b=a.

® |dea of proof: the assumption that L is a cohomology sphere ensures the obstruction
classes exact. We can then inductively build a bounding cochain that satisfies the
Maurer-Cartan equation modulo FE C. Taking the limit as / — oo, we get an honest
bounding cochain satisfying the Maurer-Cartan equation.
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Proof of classification of bounding pairs (for cohomology

spheres), cont'd

® Proof: For the base case, take a representative of the Poincaré dual of a point
by € A"(L). Set b(g) := a- by € ZrC. By the energy zero property,
m7(ebo) =0 = coy - 1 (mod FEoC) where c(o) := 0. Clearly, [, by = a, db(gy = 0.
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Proof of classification of bounding pairs (for cohomology

spheres), cont'd

® Proof: For the base case, take a representative of the Poincaré dual of a point

by € A"(L). Set b(g) := a- by € ZrC. By the energy zero property,

m?(e?®) =0 = ¢y - 1 (mod FEC) where ¢(g) := 0. Clearly, [, b = a, db(g) = 0.
® By induction, suppose we have by € C with deg¢ by =1, and

/b(,) =a, m’y(eb(/)) =cquy: 1 (mod FEo Q)
L
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Proof of classification of bounding pairs (for cohomology

spheres), cont'd

® Proof: For the base case, take a representative of the Poincaré dual of a point

by € A"(L). Set b(g) := a- by € ZrC. By the energy zero property,

m?(e?®) =0 = ¢y - 1 (mod FEC) where ¢(g) := 0. Clearly, [, b = a, db(g) = 0.
® By induction, suppose we have by € C with deg¢ by =1, and

/b(,) =a, m'y(eb(/)) =cquy: 1 (mod FEo Q)
L

® Take the obstruction chains o; of b(j). We can choose forms b; € Al=degXi([) such that
(—1)d8Ndb; = —o; for all j € {k;+1,..., K41} with deg \; # 2. If deg \; =2 — n, then
oj = 0 since degoj = 2 — deg \;. Hence we can take b; = 0. If 2 — n < deg \; < 2, then
0 < |oj| < n, so the assumption that L is a cohomology sphere shows existence of the
b;. For other possible values of deg A;, o; = 0 by degree considerations, so we can again
take b; = 0.
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Proof of classification of bounding pairs (for cohomology

spheres), cont'd

® The energy zero property gives us,

b1y 1= by + > Ajbj
ki+1<j<ky1,deg A;7#2

which satisfies m”(eP0+) = c(+1) - 1 (mod FE+1C) and [, biy1 = a.
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Proof of classification of bounding pairs (for cohomology

spheres), cont'd

® The energy zero property gives us,

b1y 1= by + > Ajbj
ki+1<j<ky1,deg A;7#2

which satisfies m”(eP0+) = c(+1) - 1 (mod FE+1C) and [, biy1 = a.
® We get a sequence {b())}72, that converges in the filtration topology. Thus, b := lim; b))
is our desired bounding cochain with m?(e®?) =c-1and [, b= a.
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Proof of classification of bounding pairs (for cohomology

spheres), cont'd

® The energy zero property gives us,

b1y 1= by + > Ajbj
ki+1<j<ky1,deg A;7#2
which satisfies m”(eP0+) = c(+1) - 1 (mod FE+1C) and [, biy1 = a.

® We get a sequence {b())}72, that converges in the filtration topology. Thus, b := lim; b))
is our desired bounding cochain with m?(e®?) =c-1and [, b= a.

® Injectivity of p relies on a similar obstruction class argument.
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Proof of the OGW axioms

® |t is enough to prove the axioms for the basis elements as input. Without loss of
generality, take [p = 1,T1,..., Ty € Ho(M, L;R) as a basis.

¢ (Proof of degree axiom): The superpotential (v, b) is of degree 3 — n. The partial
derivatives 8t,.1 .. -at;, Ok decrease the degree by kdegs + 2}21 2 — |j|. Taking out T8
decreases the degree by 1i(/5). When setting the variables s = t; = 0, only the degree zero
term remains. Thus OGWjp  # 0 only if (3—n) — k(1 —n) — (Z}:l 2—1Ij|)—w(B) =0.
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Proofs of the OGW axioms, cont'd

® (Proof of fundamental class axiom): (We can assume 0;,b = 0) We have

1
(_1)”atoQ = Z m@to%,l(b@k? ’y®l), b) + 6t0m11
k>0 "

1 —
" 2 TG p e 0

=(90,1(;1), b)
— (_1\t+1 76 — (_1\+1 750
(=) T /Lb. (—1)"1TPos

® Thus, 0,04 Q|s=t,=0 # 0 unless J = {s}, in which case it is —Tho. By definition, this
means OGWj, 1(1) = —1, and 0 otherwise.
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Proof of the OGW axioms, continued

* (Proof of symplectic deformation invariance): Define A’ to be the J-dependent
Novikov ring,

(o]
N = {Z a; TP e A|Vi, 3 J-holomorphic disc representing /3;}
i=0
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Proof of the OGW axioms, continued

* (Proof of symplectic deformation invariance): Define A’ to be the J-dependent
Novikov ring,

(o]
N = {Z a; TP e A|Vi, 3 J-holomorphic disc representing /3;}
i=0

® Take a neighborhood U of w in which J is w’-tame for all w’ € U. We can similarly define
A®® operations m{Y that use the J-dependent Novikov ring. Furthermore, we can find a

bounding pair (7, b) such that b is a bounding cochain for mé, and ([4], [, b) = (T, s).
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Proof of the OGW axioms, continued

* (Proof of symplectic deformation invariance): Define A’ to be the J-dependent
Novikov ring,

o
N = {Z a;Th € A|Vi,3 J-holomorphic disc representing f3;}
i=0
® Take a neighborhood U of w in which J is w’-tame for all w’ € U. We can similarly define
A®® operations m{Y that use the J-dependent Novikov ring. Furthermore, we can find a
bounding pair (7, b) such that b is a bounding cochain for mé, and ([4], [, b) = (T, s).

¢ The bounding cochain b depends on w’ only through A7, which is the same for all ' € U
and J. Hence b is a bounding cochain for ma' for all W' € U.
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Proof of the OGW axioms, continued

* (Proof of symplectic deformation invariance): Define A’ to be the J-dependent
Novikov ring,

(o]
N = {Z a; TP e A|Vi, 3 J-holomorphic disc representing /3;}
i=0

® Take a neighborhood U of w in which J is w’-tame for all w’ € U. We can similarly define
A®® operations m{Y that use the J-dependent Novikov ring. Furthermore, we can find a
bounding pair (7, b) such that b is a bounding cochain for mé, and ([4], [, b) = (T, s).

¢ The bounding cochain b depends on w’ only through A7, which is the same for all ' € U
and J. Hence b is a bounding cochain for ma' for all W' € U.

® But b is a bounding cochain for the {mZ} in defining OGWs for all w’ € U, since mz only
considers classes that can be represented by J-holomorphic dics. But this implies the
superpotential (v, b) and hence OGWj; j is constant for all w’ € U.
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Final Remarks

® S-T showed that when there's an anti-symplectic involution, their definition of OGWs
generalize Welshinger's and Georgieva's invariants.

® In a subsequent paper, S-T show their superpotential satisfy open WDVV equations.
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Thanks!
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