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Background on (closed, genus 0) Gromov Witten theory

• Let (M, ω) be a 2n-dimensional symplectic manifold, J an ω-tame almost complex
structure.

• Closed Gromov-Witten theory seeks to count J-holomophic spheres u : S2 → M in a
curve class A ∈ H2(M;Z) intersecting prescribed cycles Xi ⊂ M.

• Define GWA,k(α1, . . . , αk) :=
∫
M0,k (A,J) ev

∗
1α1 ∧ . . . ∧ ev∗kαk , where M0,k(A, J) is the

Gromov compactification of the moduli space of J-holomorphic spheres with k marked
points, αi are Poincaré dual to Xi , and (ev1, . . . , evk) are evaluation maps of u at the
k-marked points.

• The integral needs to be made sense of, since M0,k(A, J) does not carry a fundamental
class. (Methods such as pseudocycles, virtual fundamental classes, Kuranishi structures,
polyfold theory, etc. have been used)

• If the boundary strata from the Gromov compactification have codimension ≥ 2, then
Gromov-Witten invariants can be defined. They depend neither on the almost complex
structure J as long as it tames ω, nor on the representatives of the cohomology classes αi .
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Open Gromov-Witten Theory (OGW)

• Let L be a Lagrangian submanifold of M.

• Open Gromov-Witten theory seeks to count J-holomorphic discs u : (D2,S1)→ (M, L)
with boundary on L and in a curve class β ∈ H2(M, L), that have prescribed intersection
data in M.

• Unlike in the closed case, there exist boundary strata of codimension 1 in the moduli
space of J-holomorphic discs.

• Intuitively, because of Stokes’ theorem, you would not expect the integral above to be
independent of the representatives of cohomology classes being integrated anymore.
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Some previous work in defining Open Gromov Witten invariants

• Liu defined OGWs for (M, L) carrying an S1 action (2002)

• Using anti-symplectic involution, Welschinger defined counts of real rational
J-holomorphic curves in dimensions 2,3 (2005)

• Fukaya defined OGWs for Calabi-Yau 3-fold and Maslov 0 Lagrangian (2011)

• Georgieva extended Welschinger’s work to higher, odd dimensions (2016)
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Bounding cochains in Open Gromov Witten invariants

• Fukaya introduced bounding cochains to show Lagrangian Floer theory can be defined in
more general settings.

• The bounding cochain deforms the Floer coboundary operator to one that squares to 0,
and ”cancels” codimension 1 bubbling.

• This presentation seeks to explain Solomon-Tukachinsky’s approach of defining OGWs
using bounding cochains.
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Setting

• Let (M, ω, J) be a 2n-dimensional symplectic manifold with a ω-tame almost complex
structure J, and a relatively spin Lagrangian L.

• Let Π = H2(X , L)/SL where SL is a subgroup of ker (ω ⊕ µ) : H2(X , L)→ R⊕ Z. Denote
β0 ∈ Π to be the zero element.

• Define the Novikov field Λ = {
∑∞

i=0 aiT
βi |ai ∈ R, βi ∈ Π, ω(βi ) ≥ 0, limi→∞ ω(βi ) =∞}

and Λ+ = {
∑∞

i=0 aiT
βi ∈ Λ|ω(βi ) > 0}.

• Denote cochains on L by A∗(L), and cochains on X relative to L by A∗(X , L).

• Introduce formal variables s, t0, . . . , tN .
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Moduli spaces involved

• Gromov Compactness states that for a sequence of J-holomorphic discs with uniformly
bounded energy, there exists a subsequence that converges up to PSL2(R) action to an at
worst nodal J-holomorphic disc with components that are discs or spheres.

• When there are marked points, the subsequence converges to a stable nodal
J-holomorphic disc, i.e.

2(# of interior marked and nodal points )+(# of boundary marked and nodal points ) ≥ 3

• Denote Mk+1,l(β) to be the moduli space of g = 0, J-holomorphic stable maps
u : (Σ, ∂Σ)→ (M, L) with 1 boundary component, k + 1 boundary marked points, and l
interior marked points. Let evbj :Mk+1,l(β)→ L be the evaluation map at the bj
boundary marked point, and evij :Mk+1,l(β)→ M be the evaluation map at the ij
interior marked point.
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Moduli spaces involved

• Mk+1,l(β) has virtual dimension n − 3 + µ(β) + k + 2l . It has codimension 1 boundary.

• The codimension 1 boundary we want to consider are

• Assume Mk+1,l(β) is a smooth orbifold with corners, and the evaluation maps are
proper submersions. The latter assumption will allow us to define pushforward
operations with the evaluation map. This holds for (CPn,RPn).

• The relative spin condition on L makes Mk+1,l(β) orientable.
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A∞ algebra associated to cochains of L

• Let R := Λ[[s, t0, . . . , tN ]] and Q := R[t0, . . . , tN ]. Take the ideals
IR := 〈s, t0, . . . , tN〉 C R and IQ := 〈t0, . . . , tN〉 C Q.

• Let C := A∗(L)⊗ R and D := A∗(X , L)⊗ Q. Choose γ ∈ IQA∗(X , L;Q) with
dγ = 0, deg γ = 2. Define the A∞ structure maps mγ

k : C⊗k → C for k ≥ 0 by

mγ
k(α1, . . . , αk) := δk,1dα1 +

∑
β∈Π,l≥0

T β

l!
(evb0)∗(

l∧
j=1

(eviβj )∗γ ∧
k∧

j=1

(evbβj )∗αj)

• (evb0)∗ is defined by integration over the fiber, as it’s a proper submersion. The output
is a chain given by all points that lie on a boundary of a disc with boundary constraints
α1, . . . , αk and l interior constraints γ, for all l .
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A∞ algebra associated to cochains of L, cont’d

• The {mk}∞k=0 satisfy the A∞ relations, i.e.∑
k1+k2=k+1,1≤i≤k1

(−1)ε(α)mγ
k1

(α1, . . . , αi−1,m
γ
k2

(αi , . . . , αi+k2−1), αi+k2 , . . . , αk) = 0

• Furthermore, define mγ
−1 :=

∑
β∈Π,l≥0

Tβ

l!

∫
M0,l (β)

∧l
i=1(eviβj )∗γ
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Bounding pairs and the superpotential

• Define (γ, b) to be a bounding pair with γ ∈ IQA∗(X , L;Q), dγ = 0, deg γ = 2, and
b ∈ IRC , degC b = 1 if the Maurer-Cartan equation holds∑

k≥0

mγ
k(b⊗k) = c · 1

where 1 is the constant function on L and c ∈ IR with deg c = 2. Here b is called a
(weakly) bounding cochain.

• Define the superpotential

Ω(γ, b) = ΩJ(γ, b) := (−1)n(
∑
k≥0

1

k + 1
〈mγ

k(b⊗k), b〉+ mγ
−1)

Here 〈ξ, η〉 := (−1)|η|
∫
L ξ ∧ η is the Poincaré pairing.

• The superpotential is a function on the space of bounding pairs. Note b is not necessarily
closed.
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Invariance of the superpotential

• Let (γ, b) be a bounding pair with respect to J, and (γ′, b′) a bounding pair with respect
to J ′. There exists an equivalence relation called gauge equivalence on bounding pairs
that essentially constructs an isotopy between them.

• S-T showed the following,

Theorem (Invariance of the superpotential, S-T)

If (γ, b) ∼ (γ′, b′), then ΩJ(γ, b) = ΩJ′(γ
′, b′)

• In proving this invariance, need to consider curve classes β ∈ Im{(H2(X , L)→ H1(L))} as
a special case. ”Cancel out” this possible degeneration by also considering moduli space
of spheres with 1 marked point intersecting L.
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Classification of Bounding Pairs

• Define a map ρ : {bounding pairs}/ ∼→ (IQH∗(X , L;Q))2 ⊕ (IR)1−n,

ρ([γ, b]) := ([γ],

∫
L
b)

• In certain settings, ρ is bijective,

Theorem (Classification of bounding pairs, S-T)

Assume H∗(L;R) ∼= H∗(Sn;R). Then ρ is bijective.

• Reason for the term ”point-like”: bounding cochain b is therefore determined up to
gauge equivalence by its form part of degree n, which will be a multiple of the Poincaré
dual of a point.
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Definition of OGWs using bounding cochains

• Assuming the theorems above, we can define Open Gromov-Witten invariants of the pair
(M, L). Take a basis Γ0, . . . , ΓN of H∗(M, L;R). Set Γ :=

∑N
j=0 tjΓj and deg tj = 2− |Γj |.

• Since ρ is a bijection, choose a bounding pair (γ, b) such that

ρ([γ, b]) := ([γ],

∫
L
b) = (Γ, s)

• Ω(γ, b) is independent of representatives of [(γ, b)], because of gauge equivalence.

• Define the Open Gromov-Witten Invariants OGWβ,k : H∗(M, L;R)⊗l → R by,

OGWβ,k(Γi1 , . . . , Γil ) := coefficient of T β in ∂ti1 . . . ∂til ∂
k
s Ω(γ, b)|s=tj=0

and extending linearly to general input.

• The OGWs defined this way are invariant with respect to ω-tame almost complex
structures and representatives of the cohomology class of interior constraints [γ], because
of gauge equivalence.
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Axioms of OGWs

• Kontsevich-Manin (1994) gave axioms that a Gromov-Witten theory should satisfy.

• Solomon-Tukachinsky showed OGWβ,k defined above satisfy some of the
Kontsevich-Manin axioms, including

• (1) Degree axiom: OGWβ,k(A1, . . . ,Al) = 0 unless

n − 3 + µ(β) + k + 2l = kn +
∑l

j=1 |Aj |
• (2) Fundamental class axiom:

OGWβ,k(1,A1, . . . ,Al−1) =

{
−1 when (k, l , β) = (1, 1, β0)

0 otherwise

• (3) Deformation invariance: OGWβ,k remain constant under deformations of the
symplectic form ω, for which L remains Lagrangian.
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Properties of qk ,l

• In the definition of

mγ
k(α1, . . . , αk) := δk,1dα1 +

∑
β∈Π,l≥0

T β

l!
(evb0)∗(

l∧
j=1

(eviβj )∗γ ∧
k∧

j=1

(evbβj )∗αj)

it is useful for calculational purposes to isolate terms in the sum and define

qβk,l(α1, . . . , αk ; γ1, . . . , γl) := (evb0)∗(
l∧

j=1

(eviβj )∗γj ∧
k∧

j=1

(evbβj )∗αj)

for (k , l , β) 6= (1, 0, β0) and qβ0
1,0(α) = dα, so that

mγ
k(α1, . . . , αk) :=

∑
β∈Π,l≥0

T β

l!
qβk,l(α1, . . . , αk ; γ, . . . , γ)
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Properties of qk ,l

• The operators qβk,l satisfy the following properties:

• Fundamental class: qβk,l(α1, . . . , αk ; 1, γ1, . . . , γl−1) = −1 when

(k, l , β) =

{
−1 if (0, 1, β0)

0 otherwise

• Energy zero: qβ0

k,l(α1, . . . , αk ; γ1, . . . , γl) =


dα1 if (k, l) = (1, 0)

(−1)degα1α1 ∧ α2 if (k, l) = (2, 0)

−γ1|L if (k, l) = (0, 1)

0 otherwise

• Top Degree: Suppose (k, l , β) /∈ {(1, 0, β0), (0, 1, β0), (2, 0, β0)}, then (qβk,l(α; γ))n = 0
for all lists α, γ.
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Gauge equivalence

• Work with a family of almost complex structures {Jt} and a slightly bigger moduli space:

M̃k+1,l(β) := {(t, u,−→z ,−→w ) |(u,−→z ,−→w ) ∈ M̃k+1,l(β; Jt)}

• Have evaluation maps ẽvbj : M̃k+1,l(β)→ I × L, and ẽvij .

• Can similarly define A∞ structure maps m̃k : A∗([0, 1]× L,Λ)⊗k → A∗([0, 1]× L,Λ).

• A bounding pair (γ, b)J is gauge equivalent to a bounding pair (γ′, b′)J′ if
∃b̃ ∈ A∗([0, 1]× L; Λ) satisfying b̃|{0}×L = b, b̃|{1}×L = b′ and∑

k≥0

m̃k(b̃⊗k) = c · 1

and ∃γ̃ ∈ A∗([0, 1]× X , [0, 1]× L; Λ) with d γ̃ = 0 and γ̃|{0}×X = γ, γ̃|{1}×X = γ′
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Proof of classification of bounding pairs (for cohomology

spheres)

• We first show ρ is well defined: assuming n > 0, if (γ, b) ∼ (γ′, b′), then [γ] = [γ′] and∫
L b =

∫
L′ b
′.

• Proof of well-definedness: By definition of gauge equivalence, there exist
γ̃ ∈ A∗([0, 1]× X , [0, 1]× L; Λ) with d γ̃ = 0 and γ̃|{0}×X = γ, γ̃|{1}×X = γ′. By a
generalized Stokes’ theorem on orbifolds with corners, [γ] = [γ′]. We also have
b̃ ∈ A∗([0, 1]× L; Λ) with b̃|{0}×L = b, b̃|{1}×L = b′, and satisfying the Maurer-Cartan
equation.
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Proof of classification of bounding pairs (for cohomology

spheres), cont’d

• We have∫
L
b′ −

∫
L
b =

∫
∂(I×L)

b̃ =

∫
I×L

db̃

=

∫
I×L

(c̃ · 1−
∑

(k,l ,β) 6=(1,0,β0)

q̃k,l(b̃
k ; γ̃k))n+1 (Maurer-Cartan)

=

∫
I×L

(c̃ · 1)n+1 − (q̃2,0(b̃2) + q̃0,1(γ))n+1 (Top Degree)

=

∫
I×L

(c̃ · 1)n+1 − (b̃ ∧ b̃ − γ̃|I×L)n+1

• This equals zero since deg b̃ = 1 and γ̃ ∈ A∗(I ×X , I × L), d γ̃ = 0. Since c̃ ∈ A∗([0, 1]; Λ)
and n > 0, (c̃)n+1 = 0. Thus, the map ρ is well defined.
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Definition of the obstruction classes

• To prove classification or bijectivity of the map ρ, we define obstruction classes motivated
by [FOOO]. The vanishing of obstruction classes signifies the existence of a bounding
cochain.

• There exists a natural valuation ν : R := Λ[[s, t0, . . . , tN ]]→ R≥0 defined by

ν(
∞∑
j=0

ajT
βj skj

N∏
a=0

t
laj
a ) := inf

j ,aj 6=0
(ω(βj) + kj +

N∑
a=0

laj)

• Denote FER the filtration on R defined by λ ∈ FER ⇐⇒ ν(λ) > E . The filtration
defines a topology on R: a sequence {xi} converges in R if ∀E ∈ R≥0, ∃N such that for
∀n ≥ N, an ∈ FER.
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Definition of the obstruction classes

• Given b ∈ C := A∗(L)⊗ Λ[[s, t0, . . . , tN ]], write b =
∑∞

j=0 λjbj with

bj ∈ A∗(L), λj = T βj skj
∏N

a=0 t
laj
a . We can order the {λj}∞j=0 such that if i ≤ j , then

ν(λi ) ≤ ν(λj).

• Define the index κl to be the largest index of {λj}∞j=0 such that ν(λκl ) = El .

• Suppose we have a cochain b(l) ∈ C that solves the Maurer-Cartan equation modulo

terms in FElC , i.e.
mγ(eb(l)) ≡ c(l) · 1 (mod FElC )

• Define the obstruction classes oj ∈ A∗(L) for j = κl + 1 . . . , κl+1 to be,

oj := coefficient of λj in mγ(eb(l))

• The oj are closed and satisfy deg oj = 2− deg λj .
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Proof of classification of bounding pairs (for cohomology

spheres), cont’d

• We prove the following proposition, which shows ρ is surjective: assuming
H∗(L;R) ∼= H∗(Sn;R), then for any closed γ ∈ (IQD)2 and any a ∈ (IR)1−n, there exists
a bounding cochain b for mγ such that

∫
L b = a.

• Idea of proof: the assumption that L is a cohomology sphere ensures the obstruction
classes exact. We can then inductively build a bounding cochain that satisfies the
Maurer-Cartan equation modulo FElC . Taking the limit as l →∞, we get an honest
bounding cochain satisfying the Maurer-Cartan equation.
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Proof of classification of bounding pairs (for cohomology

spheres), cont’d

• Proof: For the base case, take a representative of the Poincaré dual of a point
b0 ∈ An(L). Set b(0) := a · b0 ∈ IRC . By the energy zero property,

mγ(eb(0)) ≡ 0 = c(0) · 1 (mod FE0C ) where c(0) := 0. Clearly,
∫
L b(0) = a, db(0) = 0.

• By induction, suppose we have b(l) ∈ C with degC b(l) = 1, and∫
L
b(l) = a, mγ(eb(l)) ≡ c(l) · 1 (mod FE0C )

• Take the obstruction chains oj of b(l). We can choose forms bj ∈ A1−deg λj (L) such that

(−1)deg λjdbj = −oj for all j ∈ {κl + 1, . . . , κl+1} with deg λj 6= 2. If deg λj = 2− n, then
oj = 0 since deg oj = 2− deg λj . Hence we can take bj = 0. If 2− n < deg λj < 2, then
0 < |oj | < n, so the assumption that L is a cohomology sphere shows existence of the
bj . For other possible values of deg λj , oj = 0 by degree considerations, so we can again
take bj = 0.
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b0 ∈ An(L). Set b(0) := a · b0 ∈ IRC . By the energy zero property,

mγ(eb(0)) ≡ 0 = c(0) · 1 (mod FE0C ) where c(0) := 0. Clearly,
∫
L b(0) = a, db(0) = 0.

• By induction, suppose we have b(l) ∈ C with degC b(l) = 1, and∫
L
b(l) = a, mγ(eb(l)) ≡ c(l) · 1 (mod FE0C )

• Take the obstruction chains oj of b(l). We can choose forms bj ∈ A1−deg λj (L) such that

(−1)deg λjdbj = −oj for all j ∈ {κl + 1, . . . , κl+1} with deg λj 6= 2. If deg λj = 2− n, then
oj = 0 since deg oj = 2− deg λj . Hence we can take bj = 0. If 2− n < deg λj < 2, then
0 < |oj | < n, so the assumption that L is a cohomology sphere shows existence of the
bj . For other possible values of deg λj , oj = 0 by degree considerations, so we can again
take bj = 0.

57 / 69



Proof of classification of bounding pairs (for cohomology

spheres), cont’d

• Proof: For the base case, take a representative of the Poincaré dual of a point
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Proof of classification of bounding pairs (for cohomology

spheres), cont’d

• The energy zero property gives us,

b(l+1) := b(l) +
∑

κl+1≤j≤κl+1,deg λj 6=2

λjbj

which satisfies mγ(eb(l+1)) ≡ c(l+1) · 1 (mod FEl+1C ) and
∫
L bl+1 = a.

• We get a sequence {b(l)}∞l=0 that converges in the filtration topology. Thus, b := liml b(l)

is our desired bounding cochain with mγ(eb) = c · 1 and
∫
L b = a.

• Injectivity of ρ relies on a similar obstruction class argument.
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Proof of the OGW axioms

• It is enough to prove the axioms for the basis elements as input. Without loss of
generality, take Γ0 = 1, Γ1, . . . , ΓN ∈ H2(M, L;R) as a basis.

• (Proof of degree axiom): The superpotential Ω(γ, b) is of degree 3− n. The partial
derivatives ∂ti1 . . . ∂til ∂

k
s decrease the degree by k deg s +

∑l
j=1 2− |Γj |. Taking out T β

decreases the degree by µ(β). When setting the variables s = tj = 0, only the degree zero

term remains. Thus OGWβ,k 6= 0 only if (3− n)− k(1− n)− (
∑l

j=1 2− |Γj |)− µ(β) = 0.
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Proofs of the OGW axioms, cont’d

• (Proof of fundamental class axiom): (We can assume ∂t0b = 0) We have

(−1)n∂t0Ω =
∑
k,l≥0

1

l!(k + 1)
〈∂t0qk,l(b

⊗k ; γ⊗l), b〉+ ∂t0m
γ
−1

=
∑
k,l≥0

1

(l − 1)!(k + 1)
〈qk,l(bk ; 1⊗ γ l−1), b〉+ 0

= 〈q0,1(; 1), b〉

= (−1)n+1T β0

∫
L
b := (−1)n+1T β0s

• Thus, ∂J∂t0Ω|s=tj=0 6= 0 unless J = {s}, in which case it is −T β0 . By definition, this
means OGWβ0,1(1) = −1, and 0 otherwise.
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Proof of the OGW axioms, continued

• (Proof of symplectic deformation invariance): Define ΛJ to be the J-dependent
Novikov ring,

ΛJ := {
∞∑
i=0

aiT
βi ∈ Λ|∀i ,∃ J-holomorphic disc representing βi}

• Take a neighborhood U of ω in which J is ω′-tame for all ω′ ∈ U. We can similarly define
A∞ operations mJ

γ that use the J-dependent Novikov ring. Furthermore, we can find a

bounding pair (γ, b) such that b is a bounding cochain for mJ
γ , and ([γ],

∫
L b) = (Γ, s).

• The bounding cochain b depends on ω′ only through ΛJ , which is the same for all ω′ ∈ U
and J. Hence b is a bounding cochain for mJ

γ for all ω′ ∈ U.

• But b is a bounding cochain for the {mγ
k} in defining OGWs for all ω′ ∈ U, since mγ

k only
considers classes that can be represented by J-holomorphic dics. But this implies the
superpotential Ω(γ, b) and hence OGWβ,k is constant for all ω′ ∈ U.
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Final Remarks

• S-T showed that when there’s an anti-symplectic involution, their definition of OGWs
generalize Welshinger’s and Georgieva’s invariants.

• In a subsequent paper, S-T show their superpotential satisfy open WDVV equations.
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Thanks!
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