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1. Collective Coordinates

This was a talk I gave on 11/4/22 for Eric’s class on branes, moduli, etc.

1.1. Introduction. Collective coordinates expansion is a method frequently used to

study dynamical properties of BPS solitons. In [Gau93], collective coordinates are used

to show that dynamics in the semiclassical limit (or when low-energy is considered) of

monopoles in N = 2 supersymmetric Yang-Mills-Higgs theory are determined by an

effective N = 4 supersymmetric quantum mechanics. The idea of collective coordinates

is to incorporate time dependency of fields as coordinates of the moduli space. The

moduli space of BPS monopoles has an explicit metric inherited from Euclidean space

and can be shown to have a hyperkähler structure. The latter endows the theory

with further supersymmetries. The trajectories of BPS monopoles are along geodesics

of the inherited metric. We first review Yang-Mills-Higgs theory, its supersymmetric

extension, and then turn to collective coordinate dynamics.

1.2. BPS monopoles. Recall that the original setting was d = 3, N = 4 Yang-Mills

Higgs theory. Let A be an SO(3) connection and Φ be a Higgs field with values in the

adjoint bundle, i.e. A ∈ Ω1(M, so(3)) and Φ ∈ Ω0(M, ad P). Denote F ∈ Ω2(M, so(3))

and ∇ be the covariant derivative associated to A, i.e. ∇m = ∂m + [Am, ·]. The

Yang-Mills-Higgs action is the following functional,

(1.1) SYMH(A) =

∫
M

d3x
−1

4
Tr FmnFmn +

1

2
Tr ∇µΦ∇µΦ

1
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It is convenient to work in the A0 = 0 gauge or imposing Gauss’s law. We apply this

constraint to the other components of A as well,

∇iȦi + [Φ, Φ̇] = 0

In this gauge, the Lagrangian is given by L = T − V , where the kinetic energy T is

given by

T =
1

2

∫
M

d3xTr(ȦiȦi + Φ̇Φ̇)

and the potential energy V is of the form

V =
1

2

∫
M

d3xTr(BiBi +∇iΦ∇iΦ)

where B = 1
2
ϵijkFjk is the non-abelian field strength. Note that L = L(t) as the fields

are time dependent. To construct static monopole solutions, we minimize the static

energy V , which Bogomol’nyi showed can be rewritten as

V =

∫
d3xTr[

1

2
(Bi ∓∇iΦ)(Bi ∓∇iΦ)]± 4πk

where k = 1
4π

∫
d3x∂iTr(BiΦ) is the monopole number, which is an integer topological

invariant. We have the bound

V ≥ 4π|k|

We see that V is minimized when the bound is saturated or equivalently

(1.2) Bi = ±∇iΦ

which are called the Bogomol’nyi equations. The solutions of these equations are called

BPS monopoles.

1.3. Moduli space of BPS monopoles. We lift to d = 4 by using the fact that self-

dual Yang-Mills on R4 with x4-translational invariance is equivalent to the Bogomol’nyi

equations on R3. Let A = {Wµ(x)}, x ∈ R4 denote the space of finite energy field

configurations. To obtain x4-translational invariance, we set the x4 direction of Wµ to

be the Higgs field. Thus, the components of Wµ are,

Wi = Ai,W4 = Φ

Let G denote the gauge group. Then, the configuration space of the BPS system is

given by

C = A/G

Let Ẇ , V̇ be two tangent vectors on A. A natural metric on A is induced by the

Euclidean metric on R4

G(Ẇ , V̇ ) =

∫
d3xTr(ẆµV̇µ)
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The choice of gauge A0 = 0 or Gauss’s law says that the tangent vectors to C are

orthogonal to the gauge orbits.

∇µẆµ = 0

This implies the metric on A descends to the quotient C.
Let Mk ⊂ C be the moduli space of k-monopoles, that is monopole solutions of

the Bogomol’nyi equation with monopole number k. Let {Xa}, a = 1, . . . , dim Mk

be coordinates on the moduli space. The tangent vectors to Mk satisfy linearized

Bogomol’nyi equations,

∇[µẆν] =
1

2
ϵµνρσ∇ρẆσ

The coordinates Xa will serve as a subset of our collective coordinates.

The moduli space Mk was shown to be hyperkähler by Atiyah and Hitchin. Indeed,

the three almost complex structures from those on R4 (endowed with quaternionic

structure) can be shown to descend to Mk . These almost complex structures will

be used to define supersymmetry transformations later on. We denote these almost

complex structures on Mk by J̃ (m), m = 1, 2, 3.

1.4. Collective Coordinate Expansion. So far, we have discussed the purely bosonic

Yang-Mills-Higgs theory. It is possible to extend it to an N=2 supersymmetric theory

via the following supersymmetric Lagrangian density

(1.3)
L = Tr{−1

4
(Fmn)

2 +
1

2
(∇mP )

2 +
1

2
(∇mS)

2 − 1

2
([S, P ])2

+ iχ̄γm∇mχ− χ̄γ5[P, χ]− iχ̄[S, χ]}

where P, S are Higgs fields, and χ is a Dirac fermion.

Fluctuations about a monopole solution Wµ(x) may contain massive modes along

with zero modes. In the purely bosonic theory, zero modes were closely described

by tangent vectors to Mk. In the supersymmetric theory, the fermionic zero modes

are given by time independent solutions to the Dirac equation in the presence of a

monopole.

iγi∇iχ− i[Φ, χ] = 0

If we focus on low energy dynamics, then we ignore the massive modes, and only

introduce collective coordinates for each zero mode. For the bosonic collective coor-

dinates, we take the coordinates {Xa} of the moduli space. The fermionic collective

coordinates we denote by λa, which are one component Grassmann odd objects. We

study the N = 2 supersymmetric action under the following ansatz

(1.4)
Wµ(x, t) = Wµ(x,X(t))

χ = δaWµΓ
µϵ+λ

a(t)

with λa satisfying

−iλa(J (3))ba = λb
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The idea of collective coordinates is we incorporate time dependency as coordinates in

some moduli space, that usually has extra symmetries, such as a HK structure. If we

plug in the above ansatz into the action. Denote by n∂ the number of time derivatives

and nf the number of fermions, collective coordinates expands in n = n∂ +
1
2
nf . If we

substitute the ansatz (3.4) into the action (3.3), we obtain an action of order n = 2.

To obtain a consistent expansion, we must ensure the ansatz solves the equations of

motion to order n = 0, 1
2
, 1. To order n = 0, 1

2
, (3.4) solves the equations of motion

trivially. To order n = 1, the ansatz must be supplemented by

A0 = Ẋaϵa − iϕabλ
†aλb

P = iϕabλ
†aλb

After substituting the ansatz into the action (3.3) and integrating over spatial degrees

of freedom, one obtains the following effective action

(1.5) Seff =
1

2

∫
dtGab{ẊaẊb + 4iλ†aDtλ

b} − 4πk

where the covariant derivative on the fermionic coordinates λa is defined as

Dtλ
b = λ̇b + Γb

acẊ
aλc

and Γb
ac are the Christoffel symbols associated to the metric Gab. Notice that the effective

action is a supersymmetric quantum mechanics (d = 1) action. Since the metric on Mk

is hyperkähler, the effective action is invariant under N = 4 worldline supersymmetry,

δXa = iβ4ψ
a + iβmψ

b(J (m))ab

δλa =
−Ẋaβ4 + βmẊ

b(J (m))ab√
2

where βm are four worldline parameters which are odd Grassmann real. These are the

unbroken supersymmetries of the field theory. Writing

δWµ = δXaδaWµ

δχ = δaWµΓ
µϵ+δλ

a + sa(δWµ)Γ
µϵ+λ

a

and applying supersymmetries of the Yang-Mills-Higgs action, one can further relations

of the worldline parameters βm. In conclusion, (3.5) shows that low energy dynamics

is described by an N = 4 supersymmetric quantum mechanics.

2. Wall Crossing

2.1. Vanilla BPS wall crossing. Recall some basics about BPS states, following

[Neit10]. The Hilbert space of the quantum theory is graded by a charge lattice

H = ⊕γ∈ΛHγ
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(The lattice could be K0(D
bCoh) or H2(X,Z))One adds in supersymmetry, or fermions

and bosons, by introducing a Z/2-graded Lie algebra A with generators and commu-

tators, and considers Z/2-graded representations of A on H. We in particular consider

two elements of A that act as scalars in any representation of A; we have the Casimir

element in the universal enveloping algebra whose square root gives the mass of parti-

cles, and the central charge Z, defined as one of the generators of A. It can be shown

via a simple computation of commutators that the BPS bound holds

M ≥ |Z|

in any representation. Short representations of A, or the BPS particles, are those which

saturate the BPS bound, and long representations are those which satisfy M > |Z|.
There is an index, the trace of the Witten operator, that counts the BPS particles of

the theory with multiplicity.

Ω(γ) = # of BPS particles with multiplicity

As an index, it should be invariant under deformation. Notice that it is dependent on

the charge vector γ ∈ Λ. Suppose we have a system of two particles with rest masses

M1 and M2. By switching to the rest frame, it can be shown that the total mass M of

the physical system satisfies the inequality

M ≥M1 +M2

Combined with the BPS bound and triangle inequality, we have

M ≥M1 +M2 ≥ |Z1|+ |Z2| ≥ |Z1 + Z2| =MBPS

We see that equalities hold when Z2 = cZ1 for some c ∈ R>0 and both particles are

BPS. Therefore, we see that we run into an issue when counting BPS 2-particle states;

there will be contributions from the 1-particle BPS states. Thus, the index is well-

defined or provides an invariant count except when Z2 = cZ1 for some c ∈ R>0 and

γ = γ1+γ2. This condition defines a codimension 1 wall in some space of deformations,

and gives rise to wall crossing.

3. Kontsevich-Soibelman Wall Crossing Formula

3.1. Introduction. Wall crossing has appeared in many contexts including counts

of holomorphic discs in a Lagrangian fibration, quiver Donaldson-Thomas invariants,

Gromov-Witten theory of blow ups of toric surfaces, counting of geodesics of quadratic

differential on a curve, and N = 2, d = 4 supersymmetric gauge theory. In many cases,

the invariants have been shown to satisfy/follow from the Kontsevich-Soibelman wall

crossing formula (WCF), ∏
a
b
decreasing

fa,b =
∏

a
b
increasing

fa,b
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Here, the fa,b are automorphisms indexed by (a, b) ∈ Z2 and products on the LHS

(RHS) are ordered such that a
b
is decreasing (increasing). Intuitively, one can imagine

the LHS of the formula is a set of rays of decreasing slope heading towards a singularity

and the RHS of the formula is the set of rays of increasing slope scattering out. Com-

puting the above identity explicitly is often quite difficult, and has only been done in

a few cases. We will give a few examples of these computations, and various contexts

in which the WCF has lended inspiration. First, we define the automorphisms fa,b of

interest. They will be automorphisms of the algebraic torus. We specify to d = 2.

3.2. The Algebraic Torus. Let T = (C∗)2 be the two dimensional algebraic torus.

The set of its characters M = Hom(T,C∗) is a two dimensional lattice since each

character is described by (x, y) 7→ xayb for some m = (a, b) ∈ Z2. The algebra of

regular functions on the torus Γ(OT ) has as basis the lattice of characters, i.e.

Γ(OT ) =
⊕
m∈M

Czm = C[M ]

with multiplication defined as zm · zm′
= zm+m′

. Choose an orientation on M , i.e. an

integral, unimodular, skew-symmetric, bilinear form ⟨, ⟩ so that
∧2M ∼= Z. Define a

bracket on Γ(OT ) by,

{zm, zm′} = ⟨m,m′⟩zm+m′

This makes Γ(OT ) into a Poisson Lie algebra. Denote by Ω by the corresponding

algebraic symplectic form. If a basis {m1,m2} ⊂M is chosen such that ⟨m1,m2⟩ = 1,

then denoting z1 = zm1 and z2 = zm2 , we can identify M ∼= Z2,C[M ] = C[z±1
1 , z±1

1 ],

and Ω = dz1
z1

∧ dz2
z2
.

For each m ∈M , define a birational automorphism fm ∈ Aut(Γ(OT )) by

fm(z
m′
) := zm

′
(1± zm)⟨m,m′⟩

Notice the similarity with cluster transformations.

3.3. Quantized Algebraic Torus. We introduce a formal variable q = eiℏ to incor-

porate non-commutativity of the multiplication. Denote T̂ = (C∗)2 be the noncommu-

tative algebraic torus whose algebra of functions is

Γ(OT̂ ) =
⊕
m∈M

C[q±
1
2 ]zm = C[q±

1
2 ][M ]

where the multiplication rule is defined by zm·zm′
= q

⟨m,m′⟩
2 zm+m′

. Notice that xy = qyx

if ⟨·, ·⟩ is the chosen to be determinant. It is a quantization in the sense that in the

limit q → 1, we recover the algebraic torus T = (C∗)2.

For each m ∈ M , we can take an automorphism f̂m ∈ Aut(Γ(OT̂ )) of the quantized

torus to be conjugation by the quantum dilogarithm Ψ(ẑm) =
∏

k≥0
1

1−qk+
1
2 ẑm

, i.e. we
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take

f̂m = AdΨ(ẑm)

It’s a fact that limq→1 f̂m = fm.

3.4. Wall Structures. Our wall crossing structures or scattering diagrams will be a

set of codimension 1 walls, with automorphisms of the algebraic torus, with or without

quantization, attached to each wall. The structure is called consistent if for any loop

in the structure, the composition of automorphisms is the identity. Computing consis-

tent structures becomes complex very quickly, and to compute a consistent diagram in

practice requires inductively computing to a certain order k and increasing k → ∞. In

theory, fortunately Kontsevich-Soibelman showed that an initial wall structure deter-

mines a unique consistent structure, and consistent structures can be obtained by only

adding rays or half lines.

Example 3.1. The elementary example of scattering when ⟨m,m′⟩ = 1 (taking m =

(1, 0)). The incoming rays are (R≤0(1, 0), (1+x)) and (R≤0(0, 1), (1+ y)). Consistency

is obtained by propagating the two incoming rays and adding a third ray, i.e. adding

(R≥0(1, 0), (1+x)), (R≥0(1, 0), (1+x)), (R≥0(1, 1), (1+xy)). Notice the incoming rays

are of decreasing slope, and the outgoing rays are of increasing slope. One can check

by hand that

f1,0f0,1 = f0,1f1,1f1,0

which is in accordance with WCF. Physically, two BPS particles cross the wall and

split off a new third one.

Example 3.2. When ⟨m,m′⟩ = 2 (taking m = (2, 0)), the number of outgoing rays is

infinite. The incoming rays are (R≤0(1, 0), (1+x)) and (R≤0(0, 1), (1+y)
2). Consistency

is obtained by adding the following outgoing rays on the RHS

f1,0f0,2 = f0,2f1,4f2,6 . . . f
−2
1,2 . . . f3,4f2,2f1,0

Notice the slopes a/b decrease on the LHS, and increase on the RHS. The factors

(exponents) on the RHS are correspond to the BPS spectrum of N = 2, d = 4 super

Yang-Mills studied by Seiberg and Witten. They are also related to counts of geodesics

and saddle connections studied on curves by Neitzke.

Example 3.3. When ⟨m,m′⟩ = 3 (taking m = (3, 0)), the outgoing walls and their

automorphisms are not known. There is a region in which the walls are dense.

3.5. Aside to Stability Scattering Diagrams. Bridgeland defines scattering dia-

grams associated to 2-acyclic quiver Q, in which each indecomposable representation

of the Q defines a wall in a space of semi-slope stability conditions of Q. The scatter-

ing diagrams in Examples 5.1, 5.2, 5.3 correspond to that of the A2 quiver, Kronecker

quiver, and generalized Kronecker quiver with three arrows.
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4. Some results motivated from wall crossing

4.1. Quiver DT and Cohomological Hall Algebra. Let Q = (V,E) be a directed

quiver. What is the moduli of its representations? Let d ∈ N|V |
>0 be the dimension

vector of Q, with di the dimension of vector space Vi. For each directed edge i → j,

there is a moduli Hom(Cdi ,Cdj) of linear maps. By summing over all directed edges,

we define

Rd :=
⊕

∃ edge i→j

Hom(Cdi ,Cdj)

The gauge group Gd :=
∏

Vi
GLdi(C) acts on Rd by basis change at each vertex.

Therefore, we can take the equivariant cohomology of Rd, i.e. H
∗
Gd
(Rd) and hence its

equivariant Euler characteristic χGd
(Rd).

Let’s suppose we specialize to a quiver Q with just one node and m-loops where

m ≥ 1. The dimension vector d here is a positive integer d > 0. Note that the COHA

of an m-loop quiver with one node is the non-commutative Hilbert scheme for the

free C−algebra in m variables in [Rei11]. We form the generating series F (t) of the

equivariant Euler characteristics of Rd, i.e.

F (t) :=
∑

d∈N|V |
>0

χGd
(Rd)t

d

where t is a variable keeping track of d. Motivated by Konsevich-Soibelman, the

Donaldson-Thomas invariants of the quiver are defined to be the rational numbers

DT
(m)
d ∈ Q in the following expression

F ((−1)m−1t) =
∏
d≥1

(1− td)−(−1)(m−1)ddDT
(m)
d

These numbers are well-defined because F is a integral power series with constant term

1. It is proven in [Rei09] that remarkably DT
(m)
d ∈ N with an explicit formula

DT
(m)
d =

1

d2

∑
n|d

µ(
d

n
)(−1)(m−1)(d−n)

(
md− 1

d− 1

)

4.2. Gromov-Witten Invariants (The Tropical Vertex). The main idea of the

”Tropical Vertex” [GPS09] is that consistency of the scattering diagram is equivalent to

computing certain log Gromov-Witten invariants of blow ups of toric surfaces. Without

quantization of the algebraic torus, the tropical vertex computes g = 0 invariants. With

quantization, it computes higher genus invariants [Bou18]. It says the automorphisms

of the outgoing rays can be expressed in terms of log Gromov-Witten invariants.

Example 4.1. We take the elementary example of scattering in 5.1, but this time we

quantize the algebraic torus. Thus, the incoming rays are (R≤0(1, 0), AdΨ(ẑ(1,0))) and
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(R≤0(1, 0), AdΨ(ẑ(0,1))), with automorphisms AdΨ(x). Because the quantum dilogarithm

satisfies the Faddev-Kashaev pentagon identity

Ψ(ẑ(1,0))Ψ(ẑ(0,1)) = Ψ(ẑ(0,1))Ψ(ẑ(1,1))Ψ(ẑ(1,0))

the consistent diagram is obtained by propagating the two incoming rays and adding a

third ray (R≥0(1, 1), AdΨ(ẑ(1,1))). We consider the incoming rays and add the single ray

R≥0(1, 1) to get the fan of P2. This is the toric surface we will be working with. They

way one completes the initial incoming fan does not matter, since all toric varieties

are rational and log Gromov-Witten invariants are birationally invariant. Blow up two

distinct, non-toric fixed points on the toric boundary. Consider the strict transform of

the unique line connecting the two points. The line is rigid, so the only contributions

to its Gromov-Witten invariant NYm

g,(l,l) come from multiple covers.∑
g≥0

NYm

g,(l,l)ℏ
2g−1 =

1

l

(−1)(l−1)

2 sin lℏ
2

This formula was known in Bryan-Pandharipande, and the quantum tropical vertex

recovers it.

4.3. Gross-Siebert Mirror Symmetry program. In the Gross-Siebert program,

wall crossing structures live in affine manifolds with singularities. One inductively

proves consistency of the wall crossing by proving consistency up to a certain order

tk, and then for all k. Consistency is necessary for one to construct the mirror toric

degeneration from the dual intersection complex by gluing canonical thickenings.
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